Python script: Enphase Envoy mqtt json for Home Assistant

Overview

Python script: Enphase Envoy mqtt json for Home Assistant

A Python script that takes a real time stream from Enphase Envoy and publishes to a mqtt broker. This can then be used within Home Assistant or for other applications. The data updates at least once per second with negligible load on the Envoy.

Requirements

  • An Enphase Envoy. Note - Tested with Envoy-S-Metered-EU
  • A system running python3 with the paho.mqtt python library
  • The normal way to install paho.mqtt is
    pip install paho-mqtt
  • If that doesn't work, try
git clone https://github.com/eclipse/paho.mqtt.python
cd paho.mqtt.python
python setup.py install
  • The serial number of your Envoy. Can be obtained by browsing to "http://envoy.local"
  • The installer password for your envoy. To obtain, run the passwordCalc.py script using the Envoys serial number after first editing the file and inserting your serial number. Don't change the userName - it must be installer
  • A mqtt broker - this can be external or use the Mosquitto broker from the Home Assistant Add-on store
    • If you use the add-on, create a Home Assistant user/password for mqtt as described in the Mosquitto broker installation instructions

Install

  • Copy to host
  • Configure settings in envoy_to_mqtt_json.py

Run Script

/path/to/python3 /path/to/envoy_to_mqtt_json.py

Run it as a daemon - an example for macOs is to create a ~/Library/LaunchAgents/envoy.plist

Disabled EnvironmentVariables PATH /usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Library/Apple/usr/bin:/usr/local/sbin KeepAlive Label envoy ProgramArguments /path/to/python3 /path/to/envoy_to_mqtt_json.py RunAtLoad ">



   

    
	
     
      Disabled
     
	
     
	
     
      EnvironmentVariables
     
	
     
		
      
       PATH
      
		
      
       /usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Library/Apple/usr/bin:/usr/local/sbin
      
	
     
	
     
      KeepAlive
     
	
     
	
     
      Label
     
	
     
      envoy
     
	
     
      ProgramArguments
     
	
     
		
      
       /path/to/python3
      
		
      
       /path/to/envoy_to_mqtt_json.py
      
	
     
	
     
      RunAtLoad
     
	
     

    

   

Then use launchctl to load the plist from a terminal:

launchctl load ~/Library/LaunchAgents/envoy.plist

To stop it running use

launchctl unload ~/Library/LaunchAgents/envoy.plist

Run as systemd service on Ubuntu

Take note of where your python file has been saved as you need to point to it in the service file

/path/to/envoy_to_mqtt_json.py

Using a bash terminal

cd /etc/systemd/system

Create a file with your favourite file editor called envoy.service and add the following

[Unit]
Description=Envoy stream to MQTT

[Service]
Type=simple
ExecStart=/path/to/envoy_to_mqtt_json.py
Restart=on-failure

[Install]
WantedBy=multi-user.target

Save and close the file then run the following commands

sudo systemctl daemon-reload
sudo systemctl enable envoy.service
sudo systemctl start envoy.service

You can check the status of the service at any time by the command

systemctl status envoy

Note: this should work for any linux distribution that uses systemd services, but the instructions and locations may vary slightly.

Example output

The resulting mqtt topic should look like this example:

{
    "production": {
        "ph-a": {
            "p": 351.13,
            "q": 317.292,
            "s": 487.004,
            "v": 244.566,
            "i": 1.989,
            "pf": 0.72,
            "f": 50.0
        },
        "ph-b": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        },
        "ph-c": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        }
    },
    "net-consumption": {
        "ph-a": {
            "p": 21.397,
            "q": -778.835,
            "s": 865.208,
            "v": 244.652,
            "i": 3.539,
            "pf": 0.03,
            "f": 50.0
        },
        "ph-b": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        },
        "ph-c": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        }
    },
    "total-consumption": {
        "ph-a": {
            "p": 372.528,
            "q": -1096.126,
            "s": 1352.165,
            "v": 244.609,
            "i": 5.528,
            "pf": 0.28,
            "f": 50.0
        },
        "ph-b": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        },
        "ph-c": {
            "p": 0.0,
            "q": 0.0,
            "s": 0.0,
            "v": 0.0,
            "i": 0.0,
            "pf": 0.0,
            "f": 0.0
        }
    }
}
__Note__: Data is provided for three phases - unused phases have values of `0.0`

Description of labels

"production": = Solar panel production - always positive value
"total-consumption": = Total Power consumed - always positive value
"net-consumption": = Total power Consumed minus Solar panel production. Will be positive when importing and negative when exporting
    
    "ph-a" = Phase A    
    "ph-b" = Phase B
    "ph-c" = Phase C

        "p": =  Real Power ** This is the one to use
        "q": =  Reactive Power
        "s": =  Apparent Power
        "v": =  Voltage
        "i": =  Current
        "pf": = Power Factor
        "f": =  Frequency

value_template configuration examples

value_template: '{{ value_json["total-consumption"]["ph-a"]["p"] }}' # Phase A Total power consumed by house
value_template: '{{ value_json["net-consumption"]["ph-c"]["p"] }}'   # Phase C - Total Power imported or exported
value_template: '{{ value_json["production"]["ph-b"]["v"] }}'   # Phase B - Voltage produced by panels

configuration.yaml configuration examples

# Example configuration.yaml entry
#
# Creates sensors with names such as sensor.mqtt_production
#
sensor:
  - platform: mqtt
    state_topic: "/envoy/json"
    name: "mqtt_production"
    qos: 0
    unit_of_measurement: "W"
    value_template: '{% if is_state("sun.sun", "below_horizon")%}0{%else%}{{ value_json["production"]["ph-a"]["p"]  | int }}{%endif%}'
    state_class: measurement
    device_class: power

  - platform: mqtt
    state_topic: "/envoy/json"
    value_template: '{{ value_json["total-consumption"]["ph-a"]["p"] }}'
    name: "mqtt_consumption"
    qos: 0
    unit_of_measurement: "W"
    state_class: measurement
    device_class: power

  - platform: mqtt
    state_topic: "/envoy/json"
    name: "mqtt_power_factor"
    qos: 0
    unit_of_measurement: "%"
    value_template: '{{ value_json["total-consumption"]["ph-a"]["pf"] }}'
    state_class: measurement
    device_class: power_factor

  - platform: mqtt
    state_topic: "/envoy/json"
    name: "mqtt_voltage"
    qos: 0
    unit_of_measurement: "V"
    value_template: '{{ value_json["total-consumption"]["ph-a"]["v"] }}'
    state_class: measurement
    device_class: voltage
#

Real time power display using Power Wheel Card

Here's the code if you'd like real-time visualisations of your power usage like this:

Power Wheel card:

active_arrow_color: '#FF0000'
color_icons: true
consuming_color: '#FF0000'
grid_power_consumption_entity: sensor.importing
grid_power_production_entity: sensor.exporting
home_icon: mdi:home-outline
icon_height: mdi:18px
producing_colour: '#00FF00'
solar_icon: mdi:solar-power
solar_power_entity: sensor.solarpower
title_power: ' '
type: custom:power-wheel-card

configuration.yaml:

sensor:
  
  #
  # These ones are for Envoy via mqtt
  #
  - platform: mqtt
    state_topic: "/envoy/json"
    name: "mqtt_production"
    qos: 0
    unit_of_measurement: "W"
    value_template: '{% if is_state("sun.sun", "below_horizon")%}0{%else%}{{ value_json["production"]["ph-a"]["p"]  | int }}{%endif%}'
    state_class: measurement
    device_class: power

  - platform: mqtt
    state_topic: "/envoy/json"
    value_template: '{{ value_json["total-consumption"]["ph-a"]["p"] }}'
    name: "mqtt_consumption"
    qos: 0
    unit_of_measurement: "W"
    state_class: measurement
    device_class: power

  - platform: template
    sensors:
      exporting:
        friendly_name: "Current MQTT Energy Exporting"
        value_template: "{{ [0, (states('sensor.mqtt_production') | int - states('sensor.mqtt_consumption') | int)] | max }}"
        unit_of_measurement: "W"
        icon_template: mdi:flash
      importing:
        friendly_name: "Current MQTT Energy Importing"
        value_template: "{{ [0, (states('sensor.mqtt_consumption') | int - states('sensor.mqtt_production') | int)] | max }}"
        unit_of_measurement: "W"
        icon_template: mdi:flash
      solarpower:
        friendly_name: "Solar MQTT Power"
        value_template: "{{ states('sensor.mqtt_production')}}"
        unit_of_measurement: "W"
        icon_template: mdi:flash
This is a Virtual Keyboard which is simple yet effective to use.

Virtual-Keyboard This is a Virtual KeyBoard which can track finger movements and lets you type anywhere ranging from notepad to even web browsers. It

Jehan Patel 3 Oct 01, 2021
πŸ±πŸ–¨Cat printer is a portable thermal printer sold on AliExpress for around $20.

Cat printer is a portable thermal printer sold on AliExpress for around $20. This repository contains Python code for talking to the cat printer over

671 Jan 05, 2023
Robo Arm :: Rigging is a rigging addon for Blender that helps animating industrial robotic arms.

Robo Arm :: Rigging Robo Arm :: Rigging is a rigging addon for Blender that helps animating industrial robotic arms. It construct serial links(a kind

2 Nov 18, 2021
Hook and simulate global mouse events in pure Python

mouse Take full control of your mouse with this small Python library. Hook global events, register hotkeys, simulate mouse movement and clicks, and mu

BoppreH 722 Dec 31, 2022
A Python class for controlling the Pimoroni RGB Keypad for Raspberry Pi Pico

rgbkeypad A Python class for controlling the Pimoroni RGB Keypad for the Raspberry Pi Pico. Compatible with MicroPython and CircuitPython. keypad = RG

Martin O'Hanlon 43 Nov 11, 2022
Shotgrid Toolkit Engine for Gaffer

Shotgun toolkit engine for Gaffer Contact : Diego Garcia Huerta Overview Implementation of a shotgun engine for Gaffer. It supports the classic bootst

Diego Garcia Huerta 12 May 21, 2022
Small Robot, with LIDAR and DepthCamera. Using ROS for Maping and Navigation

πŸ€– RoboCop πŸ€– Small Robot, with LIDAR and DepthCamera. Using ROS for Maping and Navigation Made by Clemente Donoso, πŸ“ Chile πŸ‡¨πŸ‡± RoboCop Lateral Fron

Clemente Donoso Krauss 2 Jan 04, 2022
Home Assistant custom integration to fetch data from Powerpal

Powerpal custom component for Home Assistant Component to integrate with powerpal. This repository and integration is not affiliated with Powerpal. Th

Lawrence 32 Jan 07, 2023
Ingeniamotion is a library that works over ingenialink and aims to simplify the interaction with Ingenia's drives.

Ingeniamotion Ingeniamotion is a library that works over ingenialink and aims to simplify the interaction with Ingenia's drives. Requirements Python 3

Ingenia Motion Control 7 Dec 15, 2022
What if home automation was homoiconic? Just transformations of data? No more YAML!

radiale what if home-automation was also homoiconic? The upper or proximal row contains three bones, to which Gegenbaur has applied the terms radiale,

Felix Barbalet 21 Mar 26, 2022
uOTA - OTA updater for MicroPython

Update your device firmware written in MicroPython over the air. Suitable for private and/or larger projects with many files.

Martin Komon 25 Dec 19, 2022
This is a python script to grab data from Zyxel NSA310 NAS and display in Home Asisstant as sensors.

Home-Assistant Python Scripts Python Scripts for Home-Assistant (http://www.home-assistant.io) Zyxel-NSA310-Home-Assistant Monitoring This is a python

6 Oct 31, 2022
A simple small scale electric car was build which can be driven by remote control and features a fully autonomous parking procedure.

personal-autonomous-parking-car-raspberry A simple electric car model was build using Raspbery pi. The car has remote control and autonomous operation

Kostas Ziovas 2 Jan 26, 2022
A simple portable USB MIDI controller based on Raspberry-PI Pico and a 16-button keypad, written in Circuit Python

RPI-Pico-16-BTn-MIDI-Controller-using-CircuitPython A simple portable USB MIDI controller based on Raspberry-PI Pico, written in Circuit Python. Link

Rounak Dutta 3 Dec 04, 2022
Like htop (CPU and memory usage), but for your case LEDs. πŸ˜„

Like htop (CPU and memory usage), but for your case LEDs. πŸ˜„

Derek Anderson 3 Dec 08, 2021
HomeAssistant - Polyaire AirTouch 4 Integration

HomeAssistant - Polyaire AirTouch 4 Integration Custom integration to add an AirTouch 4 AC Controller Installation: Copy contents of custom_components

7 Aug 05, 2022
Home Assistant custom components MPK-Lodz

MPK Łódź sensor This sensor uses unofficial API provided by MPK Łódź. Configuration options Key Type Required Default Description name string False MP

Piotr Machowski 3 Nov 01, 2022
A Fear and Greed index visualiser for Bitcoin on a SSD1351 OLED Screen

We're Doomed - A Bitcoin Fear and Greed index OLED visualiser Doom is a first-person-shooter from the 1990s. The health status monitor was one of the

VEEB 19 Dec 29, 2022
A script for performing OTA update over BLE on ESP32

A script for performing OTA update over BLE on ESP32

Felix Biego 18 Dec 15, 2022
Run this code to blink your ThinkPad LED with a hidden mysterious Morse code! ;)

TMorse Run this code to blink your ThinkPad LED with a hidden mysterious Morse code! ;) Compatible with python3.9+. No third-party library is required

Mahyar 2 Jul 11, 2022