Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Overview

EfficientDet: Scalable and Efficient Object Detection, in PyTorch

A PyTorch implementation of EfficientDet from the 2019 paper by Mingxing Tan Ruoming Pang Quoc V. Le Google Research, Brain Team. The official and original: comming soon.

Fun with Demo:

python demo.py --weight ./checkpoint_VOC_efficientdet-d1_97.pth --threshold 0.6 --iou_threshold 0.5 --cam --score

Table of Contents

       

Recent Update

  • [06/01/2020] Support both DistributedDataParallel and DataParallel, change augmentation, eval_voc
  • [17/12/2019] Add Fast normalized fusion, Augmentation with Ratio, Change RetinaHead, Fix Support EfficientDet-D0->D7
  • [7/12/2019] Support EfficientDet-D0, EfficientDet-D1, EfficientDet-D2, EfficientDet-D3, EfficientDet-D4,... . Support change gradient accumulation steps, AdamW.

Benchmarking

We benchmark our code thoroughly on three datasets: pascal voc and coco, using family efficientnet different network architectures: EfficientDet-D0->7. Below are the results:

1). PASCAL VOC 2007 (Train/Test: 07trainval/07test, scale=600, ROI Align)

model   mAP
[EfficientDet-D0(with Weight)](https://drive.google.com/file/d/1r7MAyBfG5OK_9F_cU8yActUWxTHOuOpL/view?usp=sharing 62.16

Installation

  • Install PyTorch by selecting your environment on the website and running the appropriate command.
  • Clone this repository and install package prerequisites below.
  • Then download the dataset by following the instructions below.
  • Note: For training, we currently support VOC and COCO, and aim to add ImageNet support soon.

prerequisites

  • Python 3.6+
  • PyTorch 1.3+
  • Torchvision 0.4.0+ (We need high version because Torchvision support nms now.)
  • requirements.txt

Datasets

To make things easy, we provide bash scripts to handle the dataset downloads and setup for you. We also provide simple dataset loaders that inherit torch.utils.data.Dataset, making them fully compatible with the torchvision.datasets API.

VOC Dataset

PASCAL VOC: Visual Object Classes

Download VOC2007 + VOC2012 trainval & test
# specify a directory for dataset to be downloaded into, else default is ~/data/
sh datasets/scripts/VOC2007.sh
sh datasets/scripts/VOC2012.sh

COCO

Microsoft COCO: Common Objects in Context

Download COCO 2017
# specify a directory for dataset to be downloaded into, else default is ~/data/
sh datasets/scripts/COCO2017.sh

Training EfficientDet

  • To train EfficientDet using the train script simply specify the parameters listed in train.py as a flag or manually change them.
python train.py --network effcientdet-d0  # Example
  • With VOC Dataset:
# DataParallel
python train.py --dataset VOC --dataset_root /root/data/VOCdevkit/ --network effcientdet-d0 --batch_size 32 
# DistributedDataParallel with backend nccl
python train.py --dataset VOC --dataset_root /root/data/VOCdevkit/ --network effcientdet-d0 --batch_size 32 --multiprocessing-distributed
  • With COCO Dataset:
# DataParallel
python train.py --dataset COCO --dataset_root ~/data/coco/ --network effcientdet-d0 --batch_size 32
# DistributedDataParallel with backend nccl
python train.py --dataset COCO --dataset_root ~/data/coco/ --network effcientdet-d0 --batch_size 32 --multiprocessing-distributed

Evaluation

To evaluate a trained network:

  • With VOC Dataset:
    python eval_voc.py --dataset_root ~/data/VOCdevkit --weight ./checkpoint_VOC_efficientdet-d0_261.pth
  • With COCO Dataset comming soon.

Demo

python demo.py --threshold 0.5 --iou_threshold 0.5 --score --weight checkpoint_VOC_efficientdet-d1_34.pth --file_name demo.png

Output:

Webcam Demo

You can use a webcam in a real-time demo by running:

python demo.py --threshold 0.5 --iou_threshold 0.5 --cam --score --weight checkpoint_VOC_efficientdet-d1_34.pth

Performance

TODO

We have accumulated the following to-do list, which we hope to complete in the near future

  • Still to come:
    • EfficientDet-[D0-7]
    • GPU-Parallel
    • NMS
    • Soft-NMS
    • Pretrained model
    • Demo
    • Model zoo
    • TorchScript
    • Mobile
    • C++ Onnx

Authors

Note: Unfortunately, this is just a hobby of ours and not a full-time job, so we'll do our best to keep things up to date, but no guarantees. That being said, thanks to everyone for your continued help and feedback as it is really appreciated. We will try to address everything as soon as possible.

References

Citation

@article{efficientdetpytoan,
    Author = {Toan Dao Minh},
    Title = {A Pytorch Implementation of EfficientDet Object Detection},
    Journal = {github.com/toandaominh1997/EfficientDet.Pytorch},
    Year = {2019}
}
Owner
tonne
Machine Learning, Deep Learning, Graph Representation Learning, Reinforcement Learning
tonne
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
Hierarchical Uniform Manifold Approximation and Projection

HUMAP Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HU

Wilson Estécio Marcílio Júnior 160 Jan 06, 2023
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
Using pretrained GROVER to extract the atomic fingerprints from molecule

Extracting atomic fingerprints from molecules using pretrained Graph Neural Network models (GROVER).

Xuan Vu Nguyen 1 Jan 28, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
Gradient Step Denoiser for convergent Plug-and-Play

Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"

Samuel Hurault 11 Sep 17, 2022
Wordle Env: A Daily Word Environment for Reinforcement Learning

Wordle Env: A Daily Word Environment for Reinforcement Learning Setup Steps: git pull [email&#

2 Mar 28, 2022
[NeurIPS2021] Code Release of Learning Transferable Perturbations

Learning Transferable Adversarial Perturbations This is an official release of the paper Learning Transferable Adversarial Perturbations. The code is

Krishna Kanth 17 Nov 11, 2022
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023