Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Overview

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision

Download links and PyTorch implementation of "Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision", ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision

Xiaoshi Wu, Hadar Averbuch-Elor, Jin Sun, Noah Snavely ICCV 2021

Project Page | Paper

drawing

The WikiScenes Dataset

  1. Image and Textual Descriptions: WikiScenes contains 63K images with captions of 99 cathedrals. We provide two versions for download:

    • Low-res version used in our experiments (maximum width set to 200[px], aspect ratio fixed): (1.9GB .zip file)
    • Higher-res version (maximum longer dimension set to 1200[px], aspect ratio fixed): (19.4GB .zip file)

    Licenses for the images are provided here: (LicenseInfo.json file)

    Data Structure

    WikiScenes is organized recursively, following the tree structure in Wikimedia. Each semantic category (e.g. cathedral) contains the following recursive structure:

    ----0 (e.g., "milano cathedral duomo milan milano italy italia")
    --------0 (e.g., "Exterior of the Duomo (Milan)")
    ----------------0 (e.g., "Duomo (Milan) in art - exterior")
    ----------------1
    ----------------...
    ----------------K0-0
    ----------------category.json
    ----------------pictures (contains all pictures in current hierarchy level)
    --------1
    --------...
    --------K0
    --------category.json
    --------pictures (contains all pictures in current hierarchy level)
    ----1
    ----2
    ----...
    ----N
    ----category.json
    

    category.json is a dictionary of the following format:

    {
        "max_index": SUB-DIR-NUMBER
        "pairs" :    {
                        CATEGORY-NAME: SUB-DIR-NAME
                    }
        "pictures" : {
                        PICTURE-NAME: {
                                            "caption": CAPTION-DATA,
                                            "url": URL-DATA,
                                            "properties": PROPERTIES
                                    }
                    }
    }
    

    where:

    1. SUB-DIR-NUMBER is the total number of subcategories
    2. CATEGORY-NAME is the name of the category (e.g., "milano cathedral duomo milan milano italy italia")
    3. SUB-DIR-NAME is the name of the sub-folder (e.g., "0")
    4. PICTURE-NAME is the name of the jpg file located within the pictures folder
    5. CAPTION-DATA contains the caption and URL contains the url from which the image was scraped.
    6. PROPERTIES is a list of properties pre-computed for the image-caption pair (e.g. estimated language of caption).
  2. Keypoint correspondences: We also provide keypoint correspondences between pixels of images from the same landmark: (982MB .zip file)

    Data Structure

     {
         "image_id" : {
                         "kp_id": (x, y),
                     }
     }
    

    where:

    1. image_id is the id of each image.
    2. kp_id is the id of keypoints, which is unique across the whole dataset.
    3. (x, y) the location of the keypoint in this image.
  3. COLMAP reconstructions: We provide the full 3D models used for computing keypoint correspondences: (1GB .zip file)

    To view these models, download and install COLMAP. The reconstructions are organized by landmarks. Each landmark folder contains all the reconstructions associated with that landmark. Each reconstruction contains 3 files:

    1. points3d.txt that contains one line of data for each 3D point associated with the reconstruction. The format for each point is: POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX).
    2. images.txt that contains two lines of data for each image associated with the reconstruction. The format of the first line is: IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME. The format of the second line is: POINTS2D[] as (X, Y, POINT3D_ID)
    3. cameras.txt that contains one line of data for each camera associated with the reconstruction according to the following format: CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]

    Please refer to COLMAP's tutorial for further instructions on how to view these reconstructions.

  4. Companion datasets for additional landmark categories: We provide download links for additional category types:

    Synagogues

    Images and captions (PENDING .zip file), correspondences (PENDING .zip file), reconstructions (PENDING .zip file)

    Mosques

    Images and captions (PENDING .zip file), correspondences (PENDING .zip file), reconstructions (PENDING .zip file)

Reproducing Results

  1. Minimum requirements. This project was originally developed with Python 3.6, PyTorch 1.0 and CUDA 9.0. The training requires at least one Titan X GPU (12Gb memory) .

  2. Setup your Python environment. Clone the repository and install the dependencies:

    conda create -n <environment_name> --file requirements.txt -c conda-forge/label/cf202003
    conda activate <environment_name>
    conda install scikit-learn=0.21
    pip install opencv-python
    
  3. Download the dataset. Download the data as detailed above, unzip and place as follows: Image and textual descriptions in <project>/data/ and the correspondence file in <project>.

  4. Download pre-trained models. Download the initial weights (pre-trained on ImageNet) for the backbone model and place in <project>/models/weights/.

    Backbone Initial Weights Comments
    ResNet50 resnet50-19c8e357.pth PyTorch official model
  5. Train on the WikiScenes dataset. See instructions below. Note that the first run always takes longer for pre-processing. Some computations are cached afterwards.

Training, Inference and Evaluation

The directory launch contains template bash scripts for training, inference and evaluation.

Training. For each run, you need to specify the names of two variables, bash EXP and bash RUN_ID. Running bash EXP=wiki RUN_ID=v01 ./launch/run_wikiscenes_resnet50.sh will create a directory ./logs/wikiscenes_corr/wiki/ with tensorboard events and saved snapshots in ./snapshots/wikiscenes_corr/wiki/v01.

Inference.

If you want to do inference with our pre-trained model, please make a directory and put the model there.

    mkdir -p ./snapshots/wikiscenes_corr/final/ours

Download our validation set, and unzip it.

    unzip val_seg.zip

run sh ./launch/infer_val_wikiscenes.sh to predict masks. You can find the predicted masks in ./logs/masks.

If you want to evaluate you own models, you will also need to specify:

  • EXP and RUN_ID you used for training;
  • OUTPUT_DIR the path where to save the masks;
  • SNAPSHOT specifies the model suffix in the format e000Xs0.000;

Evaluation. To compute IoU of the masks, run sh ./launch/eval_seg.sh.

Pre-trained model

For testing, we provide our pre-trained ResNet50 model:

Backbone Link
ResNet50 model_enc_e024Xs-0.800.pth (157M)

Datasheet

We provide a datasheet for our dataset here.

License

The images in our dataset are provided by Wikimedia Commons under various free licenses. These licenses permit the use, study, derivation, and redistribution of these images—sometimes with restrictions, e.g. requiring attribution and with copyleft. We provide full license text and attribution for all images, make no modifications to any, and release these images under their original licenses. The associated captions are provided as a part of unstructured text in Wikimedia Commons, with rights to the original writers under the CC BY-SA 3.0 license. We modify these (as specified in our paper) and release such derivatives under the same license. We provide the rest of our dataset under a CC BY-NC-SA 4.0 license.

Citation

@inproceedings{Wu2021Towers,
 title={Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision},
 author={Wu, Xiaoshi and Averbuch-Elor, Hadar and Sun, Jin and Snavely, Noah},
 booktitle={ICCV},
 year={2021}
}

Acknowledgement

Our code is based on the implementation of Single-Stage Semantic Segmentation from Image Labels

Owner
Blakey Wu
Blakey Wu
Yoloxkeypointsegment - An anchor-free version of YOLO, with a simpler design but better performance

Introduction 关键点版本:已完成 全景分割版本:已完成 实例分割版本:已完成 YOLOX is an anchor-free version of

23 Oct 20, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
Anomaly detection related books, papers, videos, and toolboxes

Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify

Yue Zhao 6.7k Dec 31, 2022
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
Reinforcement Learning for Portfolio Management

qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive

Angelos Filos 406 Jan 01, 2023
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
Non-Vacuous Generalisation Bounds for Shallow Neural Networks

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required

Felix Biggs 0 Feb 04, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022