Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Overview

Towards Diverse Paragraph Captioning for Untrimmed Videos

This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Captioning for Untrimmed Videos (CVPR 2021).

Requirements

  • Python 3.6
  • Java 15.0.2
  • PyTorch 1.2
  • numpy, tqdm, h5py, scipy, six

Training & Inference

Data preparation

  1. Download the pre-extracted video features of ActivityNet Captions or Charades Captions datasets from BaiduNetdisk (code: he21).
  2. Decompress the downloaded files to the corresponding dataset folder in the ordered_feature/ directory.

Start training

  1. Train our model without reinforcement learning, * can be activitynet or charades.
$ cd driver
$ CUDA_VISIBLE_DEVICES=0 python transformer.py ../results/*/dm.token/model.json ../results/*/dm.token/path.json --is_train
  1. Fine-tune the pretrained model using self-critical with both accuracy and diversity rewards.
$ cd driver
$ CUDA_VISIBLE_DEVICES=0 python transformer.py ../results/*/dm.token.rl/model.json ../results/*/dm.token.rl/path.json --is_train --resume_file ../results/*/dm.token/model/epoch.*.th
  1. Train our model with key frames selection.
$ cd driver
$ CUDA_VISIBLE_DEVICES=0 python transformer.py ../results/*/key_frames/model.json ../results/*/key_frames/path.json --is_train --resume_file ../results/*/key_frames/pretrained.th

It will achieve a slightly worse result with only a half of the video features used at inference phase for faster decoding. You need to download the pretrained.th model at first for the key-frame selection.

Evaluation

The trained checkpoints have been saved at the results/*/folder/model/ directory. After evaluation, the generated captions (corresponding to the name file in the public_split) and evaluating scores will be saved at results/*/folder/pred/tst/.

$ cd driver
$ CUDA_VISIBLE_DEVICES=0 python transformer.py ../results/*/folder/model.json ../results/*/folder/path.json --eval_set tst --resume_file ../results/*/folder/model/epoch.*.th

We also provide the pretrained models for the ActivityNet dataset here and Charades dataset here, which are re-run and achieve similar results with the paper.

Reference

If you find this repo helpful, please consider citing:

@inproceedings{song2021paragraph,
  title={Towards Diverse Paragraph Captioning for Untrimmed Videos},
  author={Song, Yuqing and Chen, Shizhe and Jin, Qin},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Yuqing Song
A student from RUC, major in CS.
Yuqing Song
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
MISSFormer: An Effective Medical Image Segmentation Transformer

MISSFormer Code for paper "MISSFormer: An Effective Medical Image Segmentation Transformer". Please read our preprint at the following link: paper_add

Fong 22 Dec 24, 2022
Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Shoaib ahmed 1 Dec 26, 2021
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
A collection of IPython notebooks covering various topics.

ipython-notebooks This repo contains various IPython notebooks I've created to experiment with libraries and work through exercises, and explore subje

John Wittenauer 2.6k Jan 01, 2023
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix

Dan Kondratyuk 1.2k Dec 26, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022