PySurvival is an open source python package for Survival Analysis modeling

Overview

PySurvival

pysurvival_logo

What is Pysurvival ?

PySurvival is an open source python package for Survival Analysis modeling - the modeling concept used to analyze or predict when an event is likely to happen. It is built upon the most commonly used machine learning packages such NumPy, SciPy and PyTorch.

PySurvival is compatible with Python 2.7-3.7.

Check out the documentation here


Content

PySurvival provides a very easy way to navigate between theoretical knowledge on Survival Analysis and detailed tutorials on how to conduct a full analysis, build and use a model. Indeed, the package contains:


Installation

If you have already installed a working version of gcc, the easiest way to install Pysurvival is using pip

pip install pysurvival

The full description of the installation steps can be found here.


Get Started

Because of its simple API, Pysurvival has been built to provide to best user experience when it comes to modeling. Here's a quick modeling example to get you started:

# Loading the modules
from pysurvival.models.semi_parametric import CoxPHModel
from pysurvival.models.multi_task import LinearMultiTaskModel
from pysurvival.datasets import Dataset
from pysurvival.utils.metrics import concordance_index

# Loading and splitting a simple example into train/test sets
X_train, T_train, E_train, X_test, T_test, E_test = \
	Dataset('simple_example').load_train_test()

# Building a CoxPH model
coxph_model = CoxPHModel()
coxph_model.fit(X=X_train, T=T_train, E=E_train, init_method='he_uniform', 
                l2_reg = 1e-4, lr = .4, tol = 1e-4)

# Building a MTLR model
mtlr = LinearMultiTaskModel()
mtlr.fit(X=X_train, T=T_train, E=E_train, init_method = 'glorot_uniform', 
           optimizer ='adam', lr = 8e-4)

# Checking the model performance
c_index1 = concordance_index(model=coxph_model, X=X_test, T=T_test, E=E_test )
print("CoxPH model c-index = {:.2f}".format(c_index1))

c_index2 = concordance_index(model=mtlr, X=X_test, T=T_test, E=E_test )
print("MTLR model c-index = {:.2f}".format(c_index2))

Citation and License

Citation

If you use Pysurvival in your research and we would greatly appreciate if you could use the following:

@Misc{ pysurvival_cite,
  author =    {Stephane Fotso and others},
  title =     {PySurvival: Open source package for Survival Analysis modeling},
  year =      {2019--},
  url = "https://www.pysurvival.io/"
}

License

Copyright 2019 Square Inc.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021
A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

Rob 2 Aug 25, 2022
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.

Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ

Rodrigo Arenas 180 Dec 20, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Machine learning template for projects based on sklearn library.

Machine learning template for projects based on sklearn library.

Janez Lapajne 17 Oct 28, 2022
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

1 Jan 01, 2022
The unified machine learning framework, enabling framework-agnostic functions, layers and libraries.

The unified machine learning framework, enabling framework-agnostic functions, layers and libraries. Contents Overview In a Nutshell Where Next? Overv

Ivy 8.2k Dec 31, 2022
A Collection of Conference & School Notes in Machine Learning 🦄📝🎉

Machine Learning Conference & Summer School Notes. 🦄📝🎉

558 Dec 28, 2022
Machine Learning from Scratch

Machine Learning from Scratch Author: Shengxuan Wang From: Oregon State University Content: Building Machine Learning model from Scratch, without usin

ShawnWang 0 Jul 05, 2022
Tools for diffing and merging of Jupyter notebooks.

nbdime provides tools for diffing and merging of Jupyter Notebooks.

Project Jupyter 2.3k Jan 03, 2023
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
SynapseML - an open source library to simplify the creation of scalable machine learning pipelines

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment to test the algorithm

Martin Huber 59 Dec 09, 2022
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
Forecasting prices using Facebook/Meta's Prophet model

CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

1 Nov 27, 2021
Machine Learning for RC Cars

Suiron Machine Learning for RC Cars Prediction visualization (green = actual, blue = prediction) Click the video below to see it in action! Dependenci

Kendrick Tan 706 Jan 02, 2023
使用数学和计算机知识投机倒把

偷鸡不成项目集锦 坦率地讲,涉及金融市场的好策略如果公开,必然导致使用的人多,最后策略变差。所以这个仓库只收集我目前失败了的案例。 加密货币组合套利 中国体育彩票预测 我赚不上钱的项目,也许可以帮助更有能力的人去赚钱。

Roy 28 Dec 29, 2022
AutoOED: Automated Optimal Experiment Design Platform

AutoOED is an optimal experiment design platform powered with automated machine learning to accelerate the discovery of optimal solutions. Our platform solves multi-objective optimization problems an

Yunsheng Tian 107 Jan 03, 2023