Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

Overview

patterns-finder

Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

This library offers the capabilities:

  • A set of predefined patterns with the most useful regex.
  • Extend the patterns, by adding user defined regex.
  • Find and extarct patterns from text
  • Pandas' Dataframe support.
  • Sort the results of extraction.
  • Summarize the results of extraction.
  • Display extractions by visualy rich text annotation.
  • Build complex extraction rules based on regex (in future release).

Installation

To install the last version of patterns-finder library, use pip:

pip install patterns-finder

Usage

Find a pattern in the text

Just import patterns, like emoji from patterns_finder.patterns.web, then you can use them to find pattern in text:

from patterns_finder.patterns.web import emoji, url, email 

emoji.find("the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 ")
# Output:
# [(18, 19, 'EMOJI', '🦊'), (49, 50, 'EMOJI', '🐶')]

url.find("The lazy 🐶 has a website https://lazy.dog.com ")
# Output:
# [(25, 45, 'URL', 'https://lazy.dog.com')]

email.find("[email protected] is the email of 🦊 ")
# Output:
# [(0, 19, 'EMAIL', '[email protected]')]

The results provided by the method find for each of pattern are in the form:

[(0, 19, 'EMAIL', '[email protected]')]
  ^  ^       ^          ^ 
  |  |       |          |
 Offset      |          └ Text matching the pattern
  |  |       └ Label of the pattern
  |  └ End index
  └ Start index in the text

Find multiple patterns in the text

To search for different patterns in the text we can use the method finder.patterns_in_text(text, patterns) as follows:

from patterns_finder import finder
from patterns_finder.patterns.web import emoji, url, color_hex
from patterns_finder.patterns.number import integer

patterns = [emoji, color_hex, integer]
text = "the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 "
finder.patterns_in_text(text, patterns)
# Output:
# [(18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶'),
#  (10, 17, 'COLOR_HEX', '#A52A2A'),
#  (12, 14, 'INTEGER', '52'),
#  (15, 16, 'INTEGER', '2'),
#  (27, 28, 'INTEGER', '3')]

Find user defined patterns in the text

To define new pattern you can use any regex pattern that are supported by the regex and re packages of python. User defined patterns can be writen in the form of string regex pattern or tuple of string ('regex pattern', 'label').

patterns = [web.emoji, "quick|lazy", ("\\b[a-zA-Z]+\\b", "WORD") ]
text = "the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 "
finder.patterns_in_text(text, patterns)
# Output: 
# [(18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶'),
#  (4, 9, 'quick|lazy', 'quick'),
#  (44, 48, 'quick|lazy', 'lazy'),
#  (0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy')]

Sort extraxted patterns

By using the argument sort_by of the method finder.patterns_in_text we can sort the extraction accoring to different options:

  • sort_by=finder.START sorts the results by the start index in the text
patterns = [web.emoji, color_hex, ('\\b[a-zA-Z]+\\b', 'WORD') ]
finder.patterns_in_text(text, patterns, sort_by=finder.START)
# Output:
# [(0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (10, 17, 'COLOR_HEX', '#A52A2A'),
#  (18, 19, 'EMOJI', '🦊'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy'),
#  (49, 50, 'EMOJI', '🐶')]
  • sort_by=finder.END sorts the results by the end index in the text
finder.patterns_in_text(text, patterns, sort_by=finder.END)
# Output:
# [(0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (10, 17, 'COLOR_HEX', '#A52A2A'),
#  (18, 19, 'EMOJI', '🦊'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy'),
#  (49, 50, 'EMOJI', '🐶')]
  • sort_by=finder.LABEL sorts the results by pattern's label
finder.patterns_in_text(text, patterns, sort_by=finder.LABEL)
# Output:
# [(10, 17, 'COLOR_HEX', '#A52A2A'),
#  (18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶'),
#  (0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy')]
  • sort_by=finder.TEXT sorts the results by the extracted text
finder.patterns_in_text(text, patterns, sort_by=finder.TEXT)
# Output:
# [(10, 17, 'COLOR_HEX', '#A52A2A'),
#  (20, 26, 'WORD', 'jumped'),
#  (44, 48, 'WORD', 'lazy'),
#  (35, 39, 'WORD', 'over'),
#  (4, 9, 'WORD', 'quick'),
#  (0, 3, 'WORD', 'the'),
#  (40, 43, 'WORD', 'the'),
#  (29, 34, 'WORD', 'times'),
#  (49, 50, 'EMOJI', '🐶'),
#  (18, 19, 'EMOJI', '🦊')]

Summarize results of extraction

By using the argument summary_type, one can choose the desired form of output results.

  • summary_type=finder.NONE retruns a list with all details, without summarization.
patterns = [ color_hex, ('\\b[a-zA-Z]+\\b', 'WORD'), web.emoji ]
finder.patterns_in_text(text, patterns, summary_type=finder.NONE)
# Output:
# [(10, 17, 'COLOR_HEX', '#A52A2A'),
#  (0, 3, 'WORD', 'the'),
#  (4, 9, 'WORD', 'quick'),
#  (20, 26, 'WORD', 'jumped'),
#  (29, 34, 'WORD', 'times'),
#  (35, 39, 'WORD', 'over'),
#  (40, 43, 'WORD', 'the'),
#  (44, 48, 'WORD', 'lazy'),
#  (18, 19, 'EMOJI', '🦊'),
#  (49, 50, 'EMOJI', '🐶')]
  • summary_type=finder.LABEL_TEXT_OFFSET returns a dictionary of patterns labels as keys, with the corresponding offsets and text as values.
finder.patterns_in_text(text, patterns, summary_type=finder.LABEL_TEXT_OFFSET)
# Output:
# {
#  'COLOR_HEX': [[10, 17, '#A52A2A']],
#  'WORD': [[0, 3, 'the'], [4, 9, 'quick'], [20, 26, 'jumped'], [29, 34, 'times'], [35, 39, 'over'], [40, 43, 'the'], [44, 48, 'lazy']],
#  'EMOJI': [[18, 19, '🦊'], [49, 50, '🐶']]
# }
  • summary_type=finder.LABEL_TEXT returns a dictionary of patterns labels as keys, with the corresponding text (without offset) as values.
finder.patterns_in_text(text, patterns, summary_type=finder.LABEL_TEXT)
# Output:
# {
#  'COLOR_HEX': ['#A52A2A'],
#  'WORD': ['the', 'quick', 'jumped', 'times', 'over', 'the', 'lazy'],
#  'EMOJI': ['🦊', '🐶']
# }
  • summary_type=finder.TEXT_ONLY returns a list of the extracted text only.
finder.patterns_in_text(text, patterns, summary_type=finder.TEXT_ONLY)
# Output:
# ['#A52A2A', 'the', 'quick', 'jumped', 'times', 'over', 'the', 'lazy', '🦊', '🐶']

Extract patterns from Pandas DataFrame

This package provides the capability to extract patterns from Pandas' DataFrame easily, by using the method finder.patterns_in_df(df, input_col, output_col, patterns, ...).

from patterns_finder import finder
from patterns_finder.patterns import web
import pandas as pd

patterns = [web.email, web.emoji, web.url]

df = pd.DataFrame(data={
    'text': ["the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶",
                    "[email protected] is the email of 🦊",
                    "The lazy 🐶 has a website https://lazy.dog.com"],
    })

finder.patterns_in_df(df, "text", "extraction", patterns, summary_type=finder.LABEL_TEXT)
# Output:
# |    | text                                                 | extraction                                          |
# |---:|:-----------------------------------------------------|:----------------------------------------------------|
# |  0 | the quick #A52A2A 🦊 jumped 3 times over the lazy 🐶 | {'EMOJI': ['🦊', '🐶']}                            |
# |  1 | [email protected] is the email of 🦊               | {'EMAIL': ['[email protected]'], 'EMOJI': ['🦊']} |
# |  2 | The lazy 🐶 has a website https://lazy.dog.com       | {'EMOJI': ['🐶'], 'URL': ['https://lazy.dog.com']}  |

The method finder.patterns_in_df have also the arguments summary_type and sort_by.

List of all predefined patterns

  • Web
from patterns_finder.web import email, url, uri, mailto, html_link, sql, color_hex, copyright, alphanumeric, emoji, username, quotation, ipv4, ipv6
  • Phone
from patterns_finder.phone import generic, uk, us
  • Credit Cards
from patterns_finder.credit_card import generic, visa, mastercard, discover, american_express
  • Numbers
from patterns_finder.number import integer, float, scientific, hexadecimal, percent, roman
  • Currency
from patterns_finder.currency import monetary, symbol, code, name
  • Languages
from patterns_finder.language import english, french, spanish, arabic, hebrew, turkish, russian, german, chinese, greek, japanese, hindi, bangali, armenian, swedish, portoguese, balinese, georgian
  • Time and Date
from patterns_finder.time_date import time, date, year
  • Postal Code
from patterns_finder.postal_code import us, canada, uk, france, spain, switzerland, brazilian

Contact

Please email your questions or comments to me.

You might also like...
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

texlive expressions for documents

tex2nix Generate Texlive environment containing all dependencies for your document rather than downloading gigabytes of texlive packages. Installation

DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task

DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task。涵盖68个领域、共计916万词的专业词典知识库,可用于文本分类、知识增强、领域词汇库扩充等自然语言处理应用。

This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR • Installation • Get Star

Comments
  • Add Support for Patents patterns

    Add Support for Patents patterns

    Support Patent patterns w/ first implementation to support Patents globally

    Example usage:

    from patterns_finder.patterns.patents import global_patent
    global_patent.find("Patent US5960368A is titled Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials ")
    # Output:
    # [(7, 16, 'PATENT', 'US5960368A')]
    
    

    requesting permission to add the patterns :p

    opened by mahzy 0
Releases(1.0.1)
Final Project Bootcamp Zero

The Quest (Pygame) Descripción Este es el repositorio de código The-Quest para el proyecto final Bootcamp Zero de KeepCoding. El juego consiste en la

Seven-z01 1 Mar 02, 2022
Speech to text streamlit app

Speech to text Streamlit-app! 👄 This speech to text recognition is powered by t

Charly Wargnier 9 Jan 01, 2023
Prithivida 690 Jan 04, 2023
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 408 Dec 29, 2022
Chinese Named Entity Recognization (BiLSTM with PyTorch)

BiLSTM-CRF for Name Entity Recognition PyTorch version A PyTorch implemention of Bi-LSTM-CRF model for Chinese Named Entity Recognition. 使用 PyTorch 实现

5 Jun 01, 2022
Compute distance between sequences. 30+ algorithms, pure python implementation, common interface, optional external libs usage.

TextDistance TextDistance -- python library for comparing distance between two or more sequences by many algorithms. Features: 30+ algorithms Pure pyt

Life4 3k Jan 06, 2023
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Maarten Grootendorst 120 Dec 27, 2022
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"

UNITER: UNiversal Image-TExt Representation Learning This is the official repository of UNITER (ECCV 2020). This repository currently supports finetun

Yen-Chun Chen 680 Dec 24, 2022
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
FactSumm: Factual Consistency Scorer for Abstractive Summarization

FactSumm: Factual Consistency Scorer for Abstractive Summarization FactSumm is a toolkit that scores Factualy Consistency for Abstract Summarization W

devfon 83 Jan 09, 2023
Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃

This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers mor

Princeton Natural Language Processing 92 Dec 27, 2022
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Weitang Liu 1.6k Jan 03, 2023
Text-Based zombie apocalyptic decision-making game in Python

Inspiration We shared university first year game coursework.[to gauge previous experience and start brainstorming] Adapted a particular nuclear fallou

Amin Sabbagh 2 Feb 17, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022
Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Lau 1 Dec 17, 2021
硕士期间自学的NLP子任务,供学习参考

NLP_Chinese_down_stream_task 自学的NLP子任务,供学习参考 任务1 :短文本分类 (1).数据集:THUCNews中文文本数据集(10分类) (2).模型:BERT+FC/LSTM,Pytorch实现 (3).使用方法: 预训练模型使用的是中文BERT-WWM, 下载地

12 May 31, 2022
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022