Sapiens is a human antibody language model based on BERT.

Overview

Sapiens: Human antibody language model

    ____              _                
   / ___|  __ _ _ __ (_) ___ _ __  ___ 
   \___ \ / _` | '_ \| |/ _ \ '_ \/ __|
    ___| | |_| | |_| | |  __/ | | \__ \
   |____/ \__,_|  __/|_|\___|_| |_|___/
               |_|                    

Build & Test Pip Install Latest release

Sapiens is a human antibody language model based on BERT.

Learn more in the Sapiens, OASis and BioPhi in our publication:

David Prihoda, Jad Maamary, Andrew Waight, Veronica Juan, Laurence Fayadat-Dilman, Daniel Svozil & Danny A. Bitton (2022) BioPhi: A platform for antibody design, humanization, and humanness evaluation based on natural antibody repertoires and deep learning, mAbs, 14:1, DOI: https://doi.org/10.1080/19420862.2021.2020203

For more information about BioPhi, see the BioPhi repository

Features

  • Infilling missing residues in human antibody sequences
  • Suggesting mutations (in frameworks as well as CDRs)
  • Creating vector representations (embeddings) of residues or sequences

Sapiens Antibody t-SNE Example

Usage

Install Sapiens using pip:

# Recommended: Create dedicated conda environment
conda create -n sapiens python=3.8
conda activate sapiens
# Install Sapiens
pip install sapiens

❗️ Python 3.7 or 3.8 is currently required due to fairseq bug in Python 3.9 and above: pytorch/fairseq#3535

Antibody sequence infilling

Positions marked with * or X will be infilled with the most likely human residues, given the rest of the sequence

import sapiens

best = sapiens.predict_masked(
    '**QLV*SGVEVKKPGASVKVSCKASGYTFTNYYMYWVRQAPGQGLEWMGGINPSNGGTNFNEKFKNRVTLTTDSSTTTAYMELKSLQFDDTAVYYCARRDYRFDMGFDYWGQGTTVTVSS',
    'H'
)
print(best)
# QVQLVQSGVEVKKPGASVKVSCKASGYTFTNYYMYWVRQAPGQGLEWMGGINPSNGGTNFNEKFKNRVTLTTDSSTTTAYMELKSLQFDDTAVYYCARRDYRFDMGFDYWGQGTTVTVSS

Suggesting mutations

Return residue scores for a given sequence:

import sapiens

scores = sapiens.predict_scores(
    '**QLV*SGVEVKKPGASVKVSCKASGYTFTNYYMYWVRQAPGQGLEWMGGINPSNGGTNFNEKFKNRVTLTTDSSTTTAYMELKSLQFDDTAVYYCARRDYRFDMGFDYWGQGTTVTVSS',
    'H'
)
scores.head()
#           A         C         D         E  ...
# 0  0.003272  0.004147  0.004011  0.004590  ... <- based on masked input
# 1  0.012038  0.003854  0.006803  0.008174  ... <- based on masked input
# 2  0.003384  0.003895  0.003726  0.004068  ... <- based on Q input
# 3  0.004612  0.005325  0.004443  0.004641  ... <- based on L input
# 4  0.005519  0.003664  0.003555  0.005269  ... <- based on V input
#
# Scores are given both for residues that are masked and that are present. 
# When inputting a non-human antibody sequence, the output scores can be used for humanization.

Antibody sequence embedding

Get a vector representation of each position in a sequence

import sapiens

residue_embed = sapiens.predict_residue_embedding(
    'QVKLQESGAELARPGASVKLSCKASGYTFTNYWMQWVKQRPGQGLDWIGAIYPGDGNTRYTHKFKGKATLTADKSSSTAYMQLSSLASEDSGVYYCARGEGNYAWFAYWGQGTTVTVSS', 
    'H', 
    layer=None
)
residue_embed.shape
# (layer, position in sequence, features)
# (5, 119, 128)

Get a single vector for each sequence

seq_embed = sapiens.predict_sequence_embedding(
    'QVKLQESGAELARPGASVKLSCKASGYTFTNYWMQWVKQRPGQGLDWIGAIYPGDGNTRYTHKFKGKATLTADKSSSTAYMQLSSLASEDSGVYYCARGEGNYAWFAYWGQGTTVTVSS', 
    'H', 
    layer=None
)
seq_embed.shape
# (layer, features)
# (5, 128)

Notebooks

Try out Sapiens in your browser using these example notebooks:

Links Notebook Description
01_sapiens_antibody_infilling Predict missing positions in an antibody sequence
02_sapiens_antibody_embedding Get vector representations and visualize them using t-SNE

Acknowledgements

Sapiens is based on antibody repertoires from the Observed Antibody Space:

Kovaltsuk, A., Leem, J., Kelm, S., Snowden, J., Deane, C. M., & Krawczyk, K. (2018). Observed Antibody Space: A Resource for Data Mining Next-Generation Sequencing of Antibody Repertoires. The Journal of Immunology, 201(8), 2502–2509. https://doi.org/10.4049/jimmunol.1800708

Owner
Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc.
Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc.
This is an incredibly powerful calculator that is capable of many useful day-to-day functions.

Description 💻 This is an incredibly powerful calculator that is capable of many useful day-to-day functions. Such functions include solving basic ari

Jordan Leich 37 Nov 19, 2022
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

Ishtiaq Hussain 2 Feb 10, 2022
COVID-19 Chatbot with Rasa 2.0: open source conversational AI

COVID-19 chatbot implementation with Rasa open source 2.0, conversational AI framework.

Aazim Parwaz 1 Dec 23, 2022
Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

2 Jul 05, 2022
Twitter-Sentiment-Analysis - Twitter sentiment analysis for india's top online retailers(2019 to 2022)

Twitter-Sentiment-Analysis Twitter sentiment analysis for india's top online retailers(2019 to 2022) Project Overview : Sentiment Analysis helps us to

Balaji R 1 Jan 01, 2022
A PyTorch implementation of VIOLET

VIOLET: End-to-End Video-Language Transformers with Masked Visual-token Modeling A PyTorch implementation of VIOLET Overview VIOLET is an implementati

Tsu-Jui Fu 119 Dec 30, 2022
Estimation of the CEFR complexity score of a given word, sentence or text.

NLP-Swedish … allows to estimate CEFR (Common European Framework of References) complexity score of a given word, sentence or text. CEFR scores come f

3 Apr 30, 2022
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
Paradigm Shift in NLP - "Paradigm Shift in Natural Language Processing".

Paradigm Shift in NLP Welcome to the webpage for "Paradigm Shift in Natural Language Processing". Some resources of the paper are constantly maintaine

Tianxiang Sun 41 Dec 30, 2022
Under the hood working of transformers, fine-tuning GPT-3 models, DeBERTa, vision models, and the start of Metaverse, using a variety of NLP platforms: Hugging Face, OpenAI API, Trax, and AllenNLP

Transformers-for-NLP-2nd-Edition @copyright 2022, Packt Publishing, Denis Rothman Contact me for any question you have on LinkedIn Get the book on Ama

Denis Rothman 150 Dec 23, 2022
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023
Abhijith Neil Abraham 2 Nov 05, 2021
The SVO-Probes Dataset for Verb Understanding

The SVO-Probes Dataset for Verb Understanding This repository contains the SVO-Probes benchmark designed to probe for Subject, Verb, and Object unders

DeepMind 20 Nov 30, 2022
A highly sophisticated sequence-to-sequence model for code generation

CoderX A proof-of-concept AI system by Graham Neubig (June 30, 2021). About CoderX CoderX is a retrieval-based code generation AI system reminiscent o

Graham Neubig 39 Aug 03, 2021
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0拥有丰富的模型库、简洁易用的API与高性能的分布式训练的能力,旨在为飞桨开发者提升文本建模效率,并提供基于PaddlePaddle 2.0的NLP领域最佳实践。

6.9k Jan 01, 2023
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Hugging Face 77.1k Dec 31, 2022
ConferencingSpeech2022; Non-intrusive Objective Speech Quality Assessment (NISQA) Challenge

ConferencingSpeech 2022 challenge This repository contains the datasets list and scripts required for the ConferencingSpeech 2022 challenge. For more

21 Dec 02, 2022
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021
AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

凌逆战 75 Dec 05, 2022