Sample data associated with the Aurora-BP study

Overview

The Aurora-BP Study and Dataset

This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset released alongside the publication of the Aurora-BP study, i.e., Mieloszyk, Rebecca, et al. "A Comparison of Wearable Tonometry, Photoplethysmography, and Electrocardiography for Cuffless Measurement of Blood Pressure in an Ambulatory Setting." IEEE Journal of Biomedical and Health Informatics (2022). The dataset includes de-identified participant information, raw sensor data aligned with each measurement, and a wide variety of features derived from sensor data. The publishing of this dataset as well as the characterization of multiple feature groups across a broad population and multiple settings are intended to aid future cardiovascular research.

Note that the data contained in this repository represent a very small sample of the full dataset, meant only to illustrate the structure of the files and allow testing with the sample code. For access to the full dataset, see the Data Use Application section below.

Navigation:

  • docs:
    • Data file descriptions, a detailed overview of the Aurora-BP Study protocol, and supplemental results not included in the Aurora-BP Study publication
  • notebooks:
    • Sample Jupyter notebooks and environment files for basic analyses using Aurora-BP Study data
  • sample:
    • Example data files, to run sample Jupyter notebooks and provide researchers a direct look at the data format before application for full data access.

Citation

If you use this repository, part or all of the full dataset, and/or our paper as part of your research, please refer to the dataset as the Aurora-BP dataset and cite the publication as below:


Data Access

Data Access Committee

Requests for data access are reviewed by the Data Access Committee. During review, the submitting investigator and primary investigator may be contacted for verification. The information you will need to gather to submit a Data Use Application as well as a link to the form are listed below. For additional questions regarding data access, contact: [email protected]


Data Use Application

Full data files are stored separately from this repo within an Azure data lake. To gain access to these data files, a data use application (detailed below and on the data lake landing page) must be submitted. Any researcher may submit a data use application, which includes:

  • Principal investigator information
    • Academic credentials, affiliation, contact information, curriculum vitae, signature attesting accuracy of data use application
  • Additional investigator information
    • Academic credentials, affiliation, contact information
  • Research proposal
  • Acknowledgement to comply with data use agreement. Key points are listed below:
    • No sharing of data with anyone outside of approved PI and other specified investigators. New investigators must be reviewed.
    • No data use outside of stated proposal scope
    • No joining of data with other data sources
    • No attempt to identify participants, contact participants, or reconstruct PII
    • Storage with appropriate access control and best practices
    • You may publish (or present papers or articles) on your results from using the data provided that no confidential information of Microsoft and no Personal Information are included in any such publication or presentation
    • Any publication or presentation resulting from use of the data should include reference to the Aurora-BP Study, with full reference to the source publication when appropriate
    • Aurora-BP Study authors and Microsoft are under no obligation to provide any support or additional materials related to the use of these data
    • Aurora-BP Study authors and Microsoft are not liable for any losses, damages, or harms of any kind in connection to the use of these data
    • Aurora-BP Study authors and Microsoft are not responsible or liable for the accuracy, usefulness or availability of these data
    • Primary Investigator will provide a signature of attestation that they have read, understood, and accept the data use agreement
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
A simple tool to update bib entries with their official information (e.g., DBLP or the ACL anthology).

Rebiber: A tool for normalizing bibtex with official info. We often cite papers using their arXiv versions without noting that they are already PUBLIS

(Bill) Yuchen Lin 2k Jan 01, 2023
Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries

GTFONow Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries. Features Automatically escalate privileges using miscon

101 Jan 03, 2023
Calibre recipe to convert latest issue of Analyse & Kritik into an ebook

Calibre Recipe für "Analyse & Kritik" Dies ist ein "Recipe" für die Konvertierung der aktuellen Ausgabe der Zeitung Analyse & Kritik in ein Ebook. Es

Henning 3 Jan 04, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
PyTorch code for EMNLP 2019 paper "LXMERT: Learning Cross-Modality Encoder Representations from Transformers".

LXMERT: Learning Cross-Modality Encoder Representations from Transformers Our servers break again :(. I have updated the links so that they should wor

Hao Tan 838 Dec 19, 2022
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
The first online catalogue for Arabic NLP datasets.

Masader The first online catalogue for Arabic NLP datasets. This catalogue contains 200 datasets with more than 25 metadata annotations for each datas

ARBML 94 Dec 26, 2022
Sentiment-Analysis and EDA on the IMDB Movie Review Dataset

Sentiment-Analysis and EDA on the IMDB Movie Review Dataset The main part of the work focuses on the exploration and study of different approaches whi

Nikolas Petrou 1 Jan 12, 2022
A unified tokenization tool for Images, Chinese and English.

ICE Tokenizer Token id [0, 20000) are image tokens. Token id [20000, 20100) are common tokens, mainly punctuations. E.g., icetk[20000] == 'unk', ice

THUDM 42 Dec 27, 2022
Sapiens is a human antibody language model based on BERT.

Sapiens: Human antibody language model ____ _ / ___| __ _ _ __ (_) ___ _ __ ___ \___ \ / _` | '_ \| |/ _ \ '

Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc. 13 Nov 20, 2022
A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

420 Dec 28, 2022
T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets

T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets (product titles, images, comments, etc.).

55 Nov 22, 2022
Tools to download and cleanup Common Crawl data

cc_net Tools to download and clean Common Crawl as introduced in our paper CCNet. If you found these resources useful, please consider citing: @inproc

Meta Research 483 Jan 02, 2023
Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers and helping them make a wise buying decision.

Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers an

Parv Bhatt 1 Jan 01, 2022
A sentence aligner for comparable corpora

About Yalign is a tool for extracting parallel sentences from comparable corpora. Statistical Machine Translation relies on parallel corpora (eg.. eur

Machinalis 128 Aug 24, 2022
An ActivityWatch watcher to pose questions to the user and record her answers.

aw-watcher-ask An ActivityWatch watcher to pose questions to the user and record her answers. This watcher uses Zenity to present dialog boxes to the

Bernardo Chrispim Baron 33 Dec 03, 2022
FireFlyer Record file format, writer and reader for DL training samples.

FFRecord The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux

77 Jan 04, 2023
A method to generate speech across multiple speakers

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Facebook Archive 873 Dec 15, 2022
PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging

Jacob Zhou 6 Apr 29, 2022
End-2-end speech synthesis with recurrent neural networks

Introduction New: Interactive demo using Google Colaboratory can be found here TTS-Cube is an end-2-end speech synthesis system that provides a full p

Tiberiu Boros 214 Dec 07, 2022