Ikaros is a free financial library built in pure python that can be used to get information for single stocks, generate signals and build prortfolios

Related tags

Miscellaneousikaros
Overview

Ikaros

Ikaros is a free financial library built in pure python that can be used to get information for single stocks, generate signals and build portfolios

How to use

Stock

The Stock object is a representation of all information what is available for a given security. For example for AAPL we scrape information from -

  1. https://finviz.com/quote.ashx?t=AAPL
  2. https://www.zacks.com/stock/research/AAPL/earnings-announcements

We also use the Yahoo Finance Library: yahooquery (GitHub link - https://github.com/dpguthrie/yahooquery ) to get fundamental data and price data.

>>>> from Stock import Stock
>>>> aapl = Stock('AAPL')
>>>> aapl.financial_data
             AccountsPayable  ...  WorkingCapital
ReleaseDate                   ...                
2020-01-28      4.511100e+10  ...    6.107000e+10
2020-04-30      3.242100e+10  ...    4.765900e+10
2020-07-30      3.532500e+10  ...    4.474700e+10
2020-10-29      4.229600e+10  ...    3.832100e+10
2021-01-27      6.384600e+10  ...    2.159900e+10

[5 rows x 129 columns]

>>>> aapl['PriceClose']
date
2018-02-15     41.725037
2018-02-16     41.589962
2018-02-20     41.450069
2018-02-21     41.261936
2018-02-22     41.606850
   
2021-02-08    136.910004
2021-02-09    136.009995
2021-02-10    135.389999
2021-02-11    135.130005
2021-02-12    135.369995
Name: PriceClose, Length: 754, dtype: float6

Mix and match market data with fundamental data directly. Ikaros uses the earnings calendar from Zacks to get an accurate Point in time, timeseries from fundamental data.

>>>> aapl['PriceClose'] / aapl['TotalRevenue']
date
2018-02-15             NaN
2018-02-16             NaN
2018-02-20             NaN
2018-02-21             NaN
2018-02-22             NaN
    
2021-02-08    1.228565e-09
2021-02-09    1.220488e-09
2021-02-10    1.214925e-09
2021-02-11    1.212592e-09
2021-02-12    1.214745e-09
Length: 754, dtype: float64

Ikaros also caches the data webscraped into readable csv files. If you want to save the data in a custom location, ensure that the enviornment variable IKAROSDATA is set on your operating system.

Signal

The Signal Library is repository of functions that provide useful insights into stocks. We have a limited number of signals so far but stay tuned! for more

>>>> from Signals import Quick_Ratio_Signal
>>>> ford = Stock('F')
>>>> Quick_Ratio_Signal(ford)
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08    1.089966
2021-02-09    1.089966
2021-02-10    1.089966
2021-02-11    1.089966
2021-02-12    1.089966
Length: 754, dtype: float64

>>>> from SignalTransformers import Z_Score
>>>> Z_Score(Quick_Ratio_Signal(ford), window = 21) # Computes the rolling 21 day Z-score
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08    4.248529
2021-02-09    2.924038
2021-02-10    2.320201
2021-02-11    1.949359
2021-02-12    1.688194
Length: 754, dtype: float64

Portfolio

Finally, use the signals and stock objects to construct Portfolios yourself. Currently we have

  1. Pair Trading Portfolio for 2 Stocks and a Signal
  2. Single Signal Portfolio for multiple Sotcks given a Signal
  3. A basic implementation of the Black Litterman Model

For a PairTradingPortfolio, lets look at GM and Ford and compare the two based on the Quick Ratio

>>>> from Stock import Stock
>>>> from Signals import Quick_Ratio_Signal
>>>> from Portfolio import PairTradingPortfolio
>>>> ford = Stock('F')
>>>> gm = Stock('GM')
>>>> ptp = PairTradingPortfolio(stock_obj1=ford, stock_obj2=gm, signal_func=Quick_Ratio_Signal)
>>>> ptp.relative_differencing() # The weights are set based on the rolling z-score of the difference of the signals for the 2 stocks
>>>> ptp.get_returns()
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08   -0.033217
2021-02-09    0.037791
2021-02-10    0.005568
2021-02-11   -0.001001
2021-02-12   -0.001700
Length: 754, dtype: float64
>>>> ptp.stock_obj1_wght_ts # Get the weight of Stock 1 ( Weight of stock 2 is just -1 times weight of stock 1)
Out[9]: 
date
2018-02-15         NaN
2018-02-16         NaN
2018-02-20         NaN
2018-02-21         NaN
2018-02-22         NaN
  
2021-02-08    0.814045
2021-02-09    0.818967
2021-02-10    0.823901
2021-02-11    0.909396
2021-02-12    0.910393
Length: 754, dtype: float64

For a SingleSignalPortfolio, lets look at FaceBook, Microsfot and Apple and compare them based on the Price to Sales Ratio.

>>>> from Stock import Stock
>>>> from Signals import Price_to_Sales_Signal
>>>> from Portfolio import SingleSignalPortfolio
>>>> from SignalTransformers import Z_Score
>>>> fb = Stock('FB')
>>>> msft = Stock('MSFT')
>>>> aapl = Stock('AAPL')
>>>> signal_func = lambda stock_obj : Z_Score(Price_to_Sales_Signal(stock_obj), window=42) # Use a rolling Z score over 42 days rather than the raw ratio
>>>> ssp.relative_ranking() # Rank the stock from -1 to +1, in this case we have 3 stocks it will be {-1, 0, 1}, if we have 4 sotck it would be {-1, -0.33, 0.33, 1}
>>>> ssp.weight_df
             FB  MSFT  AAPL
date                       
2018-02-15  0.0   0.0   0.0
2018-02-16  0.0   0.0   0.0
2018-02-20  0.0   0.0   0.0
2018-02-21  0.0   0.0   0.0
2018-02-22  0.0   0.0   0.0
        ...   ...   ...
2021-02-08  0.0   1.0  -1.0
2021-02-09  0.0   1.0  -1.0
2021-02-10  0.0   1.0  -1.0
2021-02-11  0.0   1.0  -1.0
2021-02-12  0.0   1.0  -1.0

[754 rows x 3 columns]
>>>> ssp.get_returns() # Initial values are 0 since signal is not available at the start for any of the stocks
date
2018-02-15    0.000000
2018-02-16    0.000000
2018-02-20    0.000000
2018-02-21    0.000000
2018-02-22    0.000000
  
2021-02-08    0.000018
2021-02-09    0.011935
2021-02-10    0.000661
2021-02-11    0.008798
2021-02-12    0.000269
Length: 754, dtype: float64

For a SimpleBlackLitterman, we can provide multiple stocks and multiple signals. Let us try to look at Ford, GM and Toyota based on the Price to Sales and Quick Ratio

>>>> from datetime import datetime
>>>> from Stock import Stock
>>>> from Signals import Quick_Ratio_Signal, Price_to_Sales_Signal
>>>> from Portfolio import SimpleBlackLitterman
>>>> from SignalTransformers import Z_Score
>>>> ford = Stock('F')
>>>> gm = Stock('GM')
>>>> toyota = Stock('TM')
>>>> signal_func1 = lambda stock_obj: Quick_Ratio_Signal(stock_obj) # Use the Raw quick Ratio
>>>> signal_func2 = lambda stock_obj: Z_Score(-1*Price_to_Sales_Signal(stock_obj), window=63) # Use the moving 63 Z score for Price to Sales. -1 to Flip the signal
>>>> signal_view_ret_arr = [0.02, 0.01] # Expected returns from each signal. Typically denoted as Q
>>>> sbl = SimpleBlackLitterman(stock_arr=[ford, gm, toyota], signal_func_arr=[signal_func1, signal_func2], signal_view_ret_arr=signal_view_ret_arr)
>>>> dt = datetime(2021, 2, 12).date()
>>>> sbl.weights_df # Weights based on MarketCap
                   F        GM        TM
date                                    
2020-02-07  0.059205  0.085642  0.855153
2020-02-10  0.059145  0.087673  0.853182
2020-02-11  0.059010  0.088974  0.852016
2020-02-12  0.059782  0.089820  0.850399
2020-02-13  0.060360  0.090068  0.849572
             ...       ...       ...
2021-02-08  0.075640  0.127209  0.797151
2021-02-09  0.077582  0.124607  0.797810
2021-02-10  0.073859  0.117810  0.808331
2021-02-11  0.073232  0.116954  0.809814
2021-02-12  0.072642  0.116230  0.811128

[257 rows x 3 columns]
>>>> sbl.var_covar_ts[dt] # Variance Covariance Martix computed based on rolling 126 days of returns, var_covar_ts is a dict of dataframes. Typically denoted as Sigma
           F        GM        TM
F   0.140825  0.085604  0.021408
GM  0.085604  0.197158  0.020909
TM  0.021408  0.020909  0.044832
>>>> sbl.implied_returns_df # Implied Returns for each day. This is often denoted as Pi
                   F        GM        TM
2020-02-10  0.012125  0.016345  0.014762
2020-02-11  0.012131  0.016199  0.014818
2020-02-12  0.011994  0.016279  0.014773
2020-02-13  0.012199  0.016374  0.014645
2020-02-14  0.011042  0.014466  0.013649
             ...       ...       ...
2021-02-08  0.038776  0.047958  0.037335
2021-02-09  0.039060  0.049541  0.037451
2021-02-10  0.038827  0.048351  0.037453
2021-02-11  0.036424  0.045034  0.040050
2021-02-12  0.037661  0.046260  0.040319

[256 rows x 3 columns]
>>>> sbl.link_mat_ts[dt] # The link matrix on a given day. link_mat_ts is a dict of dataframes. Typically denoted as Sigma
            F   GM   TM
signal_0  1.0 -1.0  0.0
signal_1 -1.0  0.0  1.0
>>>> sbl.view_var_covar_ts[dt] # The View variance covariance matrix on a given day. view_var_covar_ts is a dict of dataframes. Typically denoted as Omega
          signal_0  signal_1
signal_0  0.166775 -0.043777
signal_1 -0.043777  0.142840
>>>> sbl.black_litterman_weights_df # The Black litterman weights over time, based on the changing views
                   F        GM        TM
2020-05-07  0.077305  0.127350  0.795345
2020-05-08  0.077354  0.130177  0.792469
2020-05-11  0.077862  0.132684  0.789454
2020-05-12  0.065264  0.071459  0.863277
2020-05-13  0.114959  0.074012  0.811028
             ...       ...       ...
2021-02-08  0.116730  0.123745  0.759526
2021-02-09  0.116043  0.127209  0.756747
2021-02-10  0.149960  0.232889  0.617152
2021-02-11  0.109802 -0.032208  0.922406
2021-02-12  0.107529 -0.033443  0.925915
Owner
Salma Saidane
Salma Saidane
Wannier & vASP Postprocessing module

WASPP module Wannier90 & vASP Postprocessing module with functionalities I needed during my PhD. Being updated Version: 0.5 Main functions: Wannier90

Irián Sánchez Ramírez 4 Dec 27, 2022
A Notifier Program that Notifies you to relax your eyes Every 15 Minutes👀

Every 15 Minutes is an application that is used to Notify you to Relax your eyes Every 15 Minutes, This is fully made with Python and also with the us

FSP Gang s' Admin 1 Nov 03, 2021
This is a backport of the BaseExceptionGroup and ExceptionGroup classes from Python 3.11.

This is a backport of the BaseExceptionGroup and ExceptionGroup classes from Python 3.11. It contains the following: The exceptiongroup.BaseExceptionG

Alex Grönholm 19 Dec 15, 2022
Density is a open-sourced multi-purpose tool for ROBLOX with some cool

Density is a open-sourced multi-purpose tool for ROBLOX with some cool

ssl 5 Jul 16, 2022
Kunai Shitty Raider Leaked LMFAO

Kunai-Raider-Leaked Kunai Shitty Raider Leaked LMFA

5 Nov 24, 2021
A tool for checking if the external data used in Flatpak manifests is still up to date

Flatpak External Data Checker This is a tool for checking for outdated or broken links of external data in Flatpak manifests. Motivation Flatpak apps

Flathub 76 Dec 24, 2022
OTP-Bomber - An otp from MPL ID app, which can be spammed

OTP-Bomber An otp from MPL ID app, which can be spammed Note: Only available on

5 Oct 29, 2022
Here, I have discuss the three methods of list reversion. The three methods are built-in method, slicing method and position changing method.

Three-different-method-for-list-reversion Here, I have discuss the three methods of list reversion. The three methods are built-in method, slicing met

Sachin Vinayak Dabhade 4 Sep 24, 2021
Pipenv-local-deps-repro - Reproduction of a local transitive dependency on pipenv

Reproduction of the pipenv bug with transitive local dependencies. Clone this re

Lucas Duailibe 2 Jan 11, 2022
This is a Python script to detect rapid upwards price changes (pumps) in a cryptocurrency pairing

A python script to detect a rapid upwards price brekout (pump) in a cryptocurrency pairing, through pandas and Binance API.

3 May 25, 2022
For when you really need to rank things

Comparisonator For when you really need to rank things. Do you know that feeling when there's this urge deep within you that tells you to compare thin

Maciej Wilczyński 1 Nov 01, 2021
RecurrentArchitectures - See the accompanying blog post

Why this? What is the goal? The goal of this repository is to write all the recurrent architectures from scratch in tensorflow for learning purposes.

Debajyoti Datta 9 Feb 06, 2022
No more support server flooding with questions about unsupported hosting.

No more support server flooding with questions about unsupported hosting.

3 Aug 09, 2021
OpenSea NFT API App using Python and Streamlit

opensea-nft-api-tutorial OpenSea NFT API App using Python and Streamlit Tutorial Video Walkthrough https://www.youtube.com/watch?v=49SupvcFC1M Instruc

64 Oct 28, 2022
Laurence Billingham 1 Feb 16, 2022
Low-level Python CFFI Bindings for Argon2

Low-level Python CFFI Bindings for Argon2 argon2-cffi-bindings provides low-level CFFI bindings to the Argon2 password hashing algorithm including a v

Hynek Schlawack 4 Dec 15, 2022
2021华为软件精英挑战赛 程序输出分析器

AutoGrader 0.2.0更新:加入资源分配溢出检测,如果发生资源溢出会输出溢出发生的位置。 如果通过检测,会显示通过符号 如果没有通过检测,会显示警告,并输出溢出发生的位置和操作

54 Aug 14, 2022
Irrigation Component V4 providing support for a custom card

Irrigation Component V4 This release sees the delivery of a custom card https://github.com/petergridge/irrigation_card to render the program options s

12 Oct 28, 2022
FantasyBballHelper - Espn Fantasy Basketball Helper

ESPN FANTASY BASKETBALL HELPER The simple goal of this project is to allow fanta

1 Jan 18, 2022
A tool to help the Poly copy-reading process! :D

PolyBot A tool to help the Poly copy-reading process! :D Let's face it-computers are better are repeatitive tasks. And, in spite of what one may want

1 Jan 10, 2022