An Insurance firm providing tour insurance is facing higher claim frequency

Overview

Insurance-Claim

An Insurance firm providing tour insurance is facing higher claim frequency. Data is collected from the past few years. Made a model which predicts the claim status using CART, RF & ANN and compare the models' performances in train and test sets.

EDA

Dataset has 10 variables and 3000 instances. 2 variables are float type and 2 are integer type. There are 6 object-type variables which need to be converted to numeric form. From the above data, it is evident that no null values are present in the data. The shape of the dataset is 3000,10.

Using the describe() function in Python, a summary of all the parameters can be obtained. Asia seems to have the most insurance claims. After the removal of the duplicated data, the outliers were calculated. The outliers were not treated since all numeric values have them and can be taken care of in random forest classification.

Pairplot was performed to check continuous variables Heatmap was performed to check correlation

Decision tree in Python can take only numerical / categorical colums. It cannot take string / object types. The feature statement loops through each column and checks if the column type is object then converts those columns into categorical with each distinct value becoming a category.

Split the data into test and train, to build classification model CART, Random Forest, Artificial Neural Network.

Built a decision tree and found the variable importance and predicted the test data. Added tuning parameters to regulise the decision tree and found the variable importance again. Found the prediting probabilities

Random Forest

Treated the model for outliers Predicted test and train data with RF model

MLP Classifier

Predicted using the training and testing data

ROC_AUC

Checked the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model.

Analysis

Looking at the model, more data will help us understand and predict models better. Streamlining online experiences benefitted customers, leading to an increase in conversions, which subsequently raised profits. As per the data 90% of insurance is done by online channel. Other interesting fact, is almost all the offline business has a claimed associated with it. Need to train the JZI agency resources to pick up sales as they are in bottom, need to run promotional marketing campaign or evaluate if we need to tie up with alternate agency. Also based on the model we are getting 80% accuracy, so we need customer books airline tickets or plans, cross sell the insurance based on the claim data pattern. Other interesting fact is more sales happen via Agency than Airlines and the trend shows the claim are processed more at Airline. So, we may need to dive deeper to understand the workflow. Key performance indicators (KPI) will increase customer satisfaction which in fact will give more revenue, combat fraud transactions, deploy measures to avoid fraudulent transactions at earliest as well as optimize claim-recovery method. It will also reduce the claim handling costs

Owner
MSBA Graduate Student at University of Illinois at Chicago | Passionate Analyst | SQL | Python | R programming | Tableau | Haddop
Ningyu Jia(nj2459)/Mengyin Ma(mm5937) Call Analysis group project(Group 36)

Group and Section Group 36 Section 001 name and UNI Name UNI Ningyu Jia nj2459 Mengyin Ma mm5937 code explanation Parking.py (1) Calculate the rate of

1 Dec 04, 2021
run-js Goal: The Easiest Way to Run JavaScript in Python

run-js Goal: The Easiest Way to Run JavaScript in Python features Stateless Async JS Functions No Intermediary Files Functional Programming CommonJS a

Daniel J. Dufour 9 Aug 16, 2022
Python script to autodetect a base set of swiftlint rules.

swiftlint-autodetect Python script to autodetect a base set of swiftlint rules. Installation brew install pipx

Jonathan Wight 24 Sep 20, 2022
Notebooks for computing approximations to the prime counting function using Riemann's formula.

Notebooks for computing approximations to the prime counting function using Riemann's formula.

Tom White 2 Aug 02, 2022
Estimate the Market Size for Electic and Plug-In Hybrid Vehicles In Africa

Estimate the Market Size for Electic and Plug-In Hybrid Vehicles In Africa The goal of this repository is to use open data repositories to answer the

Leonce Nshuti 0 Feb 21, 2022
A collection of resources on neural rendering.

awesome neural rendering A collection of resources on neural rendering. Contributing If you think I have missed out on something (or) have any suggest

1.8k Dec 30, 2022
Unofficial Python Library to communicate with SESAME 3 series products from CANDY HOUSE, Inc.

pysesame3 Unofficial Python Library to communicate with SESAME 3 series products from CANDY HOUSE, Inc. This project aims to control SESAME 3 series d

Masaki Tagawa 18 Dec 12, 2022
Un Assistente Vocale scritto in Python e altamente personalizzabile

Un Assistente Vocale scritto in Python e altamente personalizzabile

Marco 2 May 06, 2022
Perform oocyst segmentation in mercurochrome stained mosquito midgut

Midgut_oocyst_segmentation Perform oocyst segmentation in mercurochrome stained mosquito midguts This oocyst segmentation model also powers the webtoo

Duo Peng 3 Oct 27, 2021
Render reMarkable documents to PDF

rmrl: reMarkable Rendering Library rmrl is a Python library for rendering reMarkable documents to PDF files. It takes the original PDF document and th

Robert Schroll 95 Dec 25, 2022
A python script developed to process Windows memory images based on triage type.

Overview A python script developed to process Windows memory images based on triage type. Requirements Python3 Bulk Extractor Volatility2 with Communi

CrowdStrike 245 Nov 24, 2022
Enjoy Discords Unlimited Storage

Discord Storage V.3.5 (Beta) Made by BoKa Enjoy Discords free and unlimited storage... Prepare: Clone this from Github, make sure there either a folde

0 Dec 16, 2021
Яндекс тренировки по алгоритмам. Июнь 2021

Young&&Yandex Тренировки по алгоритмам Если вы хотите попасть на летнюю стажировку в Яндекс, но пока не уверены в своих силах, приходите на наши трени

Podlevskiy Viktor 6 Sep 03, 2021
The most hackable keyboard in all the land

MiRage Modular Keyboard © 2021 Zack Freedman of Voidstar Lab Licensed Creative Commons 4.0 Attribution Noncommercial Share-Alike The MiRage is a 60% o

Zack Freedman 558 Dec 30, 2022
Demo of patching a python context manager

patch-demo-20211203 demo of patching a python context manager poetry install poetry run python -m my_great_app to run the code poetry run pytest to te

Brad Smith 1 Feb 09, 2022
Identifies the faulty wafer before it can be used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells.

Identifies the faulty wafer before it can be used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The project retrains itself after every prediction, mak

Arun Singh Babal 2 Jul 01, 2022
This program can calculate the Aerial Distance between two cities.

Aerial_Distance_Calculator This program can calculate the Aerial Distance between two cities. This repository include both Jupyter notebook and Python

InvisiblePro 1 Apr 08, 2022
Converts a base copy of Pokemon BDSP's masterdatas into a more readable and editable Pokemon Showdown Format.

Showdown-BDSP-Converter Converts a base copy of Pokemon BDSP's masterdatas into a more readable and editable Pokemon Showdown Format. Download the lat

Alden Mo 2 Jan 02, 2022
aaencode for python,把python代码转换为颜文字

py-aaencode aaencode for python,把python代码转换为颜文字 compile.py: 将python编译成颜文字,编译结果有随机性,可以选择BPE词表压缩代码 compile_min.py: 最小化的编译器 compiled_min.txt: 编译得到的最小的com

11 Dec 30, 2021
Canim1 - Simple python tool to search for packages without m1 wheels in poetry lockfiles

canim1 Usage Clone the repo. Run poetry install. Then you can use the tool: ❯ po

Korijn van Golen 1 Jan 25, 2022