How to detect objects in real time by using Jupyter Notebook and Neural Networks , by using Yolo3

Overview

Real Time Object Recognition From your Screen Desktop .

In this post, I will explain how to build a simply program to detect objects from you desktop computer.

We will see how using OpenCV and Python, we can detect objects by applying the most popular YOLO(You Look Only Once) algorithm.

OpenCV is the computer vision library/ framework that we we will be using to support our YOLOv3 algorithm

Darknet Architecture is pre-trained model for classifying 80 different classes. Our goal now is that we will use Darknet(YOLOv3) in OpenCV to classify objects using Python language.

For this project we will consider an standard resolution 1920 x 1080 , in windows 10 in Display Setting , select the resolution 1920 x 1080

Then you need to install Anaconda at this link

img

After you install it , check that your terminal , recognize conda

C:\conda --version
conda 4.10.3

The environments supported that I will consider is Python 3.7, Keras 2.4.3 and TensorFlow 2.4.0, let us create the environment, go to you command promt terminal and type the following:

conda create -n detector python==3.7.10
conda activate detector

then in your terminal type the following commands:

conda install ipykernel
Proceed ([y]/n)? y
python -m ipykernel install --user --name detector --display-name "Python (Object Detector)"

Then we install the correct versions of the the Tensorflow, and Numpy and Keras

we create a file called requirements.txt

if your are in Windows

notepad requirements.txt

or Linux

nano  requirements.txt

and you paste the following lines

Keras==2.4.3
keras-resnet==0.2.0
numpy==1.19.3
opencv-python==3.4.2.17
tensorflow==2.4.0
tensorflow-estimator==2.4.0
tensorflow-gpu==2.4.0
Pillow==9.0.0

and then we return back to the terminal and install them

pip install -r requirements.txt

then open the Jupyter notebook with the command

jupyter notebook&

then you click create new notebook Python (Object Detector) and then you can test if you can import the the following libraries

import numpy as np
from PIL import ImageGrab
import cv2
import time
import win32gui, win32ui, win32con, win32api

The next step is is define a function that enable record you screen

def grab_screen(region=None):
    hwin = win32gui.GetDesktopWindow()
    if region:
            left,top,x2,y2 = region
            width = x2 - left + 1
            height = y2 - top + 1
    else:
        width = win32api.GetSystemMetrics(win32con.SM_CXVIRTUALSCREEN)
        height = win32api.GetSystemMetrics(win32con.SM_CYVIRTUALSCREEN)
        left = win32api.GetSystemMetrics(win32con.SM_XVIRTUALSCREEN)
        top = win32api.GetSystemMetrics(win32con.SM_YVIRTUALSCREEN)
    hwindc = win32gui.GetWindowDC(hwin)
    srcdc = win32ui.CreateDCFromHandle(hwindc)
    memdc = srcdc.CreateCompatibleDC()
    bmp = win32ui.CreateBitmap()
    bmp.CreateCompatibleBitmap(srcdc, width, height)
    memdc.SelectObject(bmp)
    memdc.BitBlt((0, 0), (width, height), srcdc, (left, top), win32con.SRCCOPY)
    signedIntsArray = bmp.GetBitmapBits(True)
    img = np.fromstring(signedIntsArray, dtype='uint8')
    img.shape = (height,width,4)
    srcdc.DeleteDC()
    memdc.DeleteDC()
    win32gui.ReleaseDC(hwin, hwindc)
    win32gui.DeleteObject(bmp.GetHandle())
    return cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)

then you define a new function called main() which will record your screen

def main():
    last_time = time.time()
    while True:
        # 1920 windowed mode
        screen = grab_screen(region=(0,40,1920,1120))
        img = cv2.resize(screen,None,fx=0.4,fy=0.3)
        height,width,channels = img.shape
        #detecting objects
        blob = cv2.dnn.blobFromImage(img,0.00392,(416,416),(0,0,0),True,crop=False)
        net.setInput(blob)
        outs = net.forward(outputlayers)
        #Showing info on screen/ get confidence score of algorithm in detecting an object in blob
        class_ids=[]
        confidences=[]
        boxes=[]
        for out in outs:
            for detection in out:
                scores = detection[5:]
                class_id = np.argmax(scores)
                confidence = scores[class_id]
                if confidence > 0.5:
                    #onject detected
                    center_x= int(detection[0]*width)
                    center_y= int(detection[1]*height)
                    w = int(detection[2]*width)
                    h = int(detection[3]*height)
                    #rectangle co-ordinaters
                    x=int(center_x - w/2)
                    y=int(center_y - h/2)
                    boxes.append([x,y,w,h]) #put all rectangle areas
                    confidences.append(float(confidence)) #how confidence was that object detected and show that percentage
                    class_ids.append(class_id) #name of the object tha was detected
        indexes = cv2.dnn.NMSBoxes(boxes,confidences,0.4,0.6)
        font = cv2.FONT_HERSHEY_PLAIN
        for i in range(len(boxes)):
            if i in indexes:
                x,y,w,h = boxes[i]
                label = str(classes[class_ids[i]])
                color = colors[i]
                cv2.rectangle(img,(x,y),(x+w,y+h),color,2)
                cv2.putText(img,label,(x,y+30),font,1,(255,255,255),2)
        #print('Frame took {} seconds'.format(time.time()-last_time))
        last_time = time.time()
        cv2.imshow('window', img)
        if cv2.waitKey(25) & 0xFF == ord('q'):
            cv2.destroyAllWindows()
            break

and finally we download the following files

  1. yolo.cfg (Download from here) — Configuration file
  2. yolo.weights (Download from here) — pre-trained weights
  3. coco.names (Download from here)- 80 classes names

then you add the following code

net = cv2.dnn.readNetFromDarknet('yolov3.cfg', 'yolov3.weights')
classes = []
with open("coco.names","r") as f:
    classes = [line.strip() for line in f.readlines()]
    
layer_names = net.getLayerNames()
outputlayers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors= np.random.uniform(0,255,size=(len(classes),3))

and finally you just run it with the simple code

main()

you can stop with simple press q

for example you want to identiy a Youtube video, of one beautiful girl

or this video https://youtu.be/QW-qWS3StZg?t=170

or the classic traffic recognition https://youtu.be/7HaJArMDKgI

Owner
Ruslan Magana Vsevolodovna
I am Data Scientist and Data Engineer. I have a Ph.D. in Physics and I am AWS certified in Machine Learning and Data Analytics
Ruslan Magana Vsevolodovna
⛓ marc is a small, but flexible Markov chain generator

About marc (markov chain) is a small, but flexible Markov chain generator. Usage marc is easy to use. To build a MarkovChain pass the object a sequenc

Max Humber 65 Oct 27, 2022
Deskewing images with slanted content

skew_correction De-skewing images with slanted content by finding the deviation using Canny Edge Detection. To Run: In python 3.6, from deskew import

13 Aug 27, 2022
LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

Murtaza Hassan 815 Dec 29, 2022
Generate a list of papers with publicly available source code in the daily arxiv

2021-06-08 paper code optimal network slicing for service-oriented networks with flexible routing and guaranteed e2e latency networkslicing multi-moda

79 Jan 03, 2023
Face Detection with DLIB

Face Detection with DLIB In this project, we have detected our face with dlib and opencv libraries. Setup This Project Install DLIB & OpenCV You can i

Can 2 Jan 16, 2022
An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Oriented Scene Text Detection

InceptText-Tensorflow An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Orien

GeorgeJoe 115 Dec 12, 2022
一款基于Qt与OpenCV的仿真数字示波器

一款基于Qt与OpenCV的仿真数字示波器

郭赟 4 Nov 02, 2022
Fine tuning keras-ocr python package with custom synthetic dataset from scratch

OCR-Pipeline-with-Keras The keras-ocr package generally consists of two parts: a Detector and a Recognizer: Detector is responsible for creating bound

Eugene 1 Jan 05, 2022
Fun program to overlay a mask to yourself using a webcam

Superhero Mask Overlay Description Simple project made for fun. It consists of placing a mask (a PNG image with transparent background) on your face.

KB Kwan 10 Dec 01, 2022
scene-linear test images

Scene-Referred Image Collection A collection of OpenEXR Scene-Referred images, encoded as max 2048px width, DWAA 80 compression. All exrs are encoded

Gralk Klorggson 7 Aug 25, 2022
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).

OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents

Zuming Huang 363 Jan 03, 2023
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Maze generator and solver with python

Procedural-Maze-Generator-Algorithms Check out my youtube channel : Auctux Ressources Thanks to Jamis Buck Book : Mazes for programmers Requirements P

Joseph 19 Dec 07, 2022
This tool will help you convert your text to handwriting xD

So your teacher asked you to upload written assignments? Hate writing assigments? This tool will help you convert your text to handwriting xD

Saurabh Daware 4.2k Jan 07, 2023
InverseRenderNet: Learning single image inverse rendering, CVPR 2019.

InverseRenderNet: Learning single image inverse rendering !! Check out our new work InverseRenderNet++ paper and code, which improves the inverse rend

Ye Yu 141 Dec 20, 2022
Awesome Spectral Indices in Python.

Awesome Spectral Indices in Python: Numpy | Pandas | GeoPandas | Xarray | Earth Engine | Planetary Computer | Dask GitHub: https://github.com/davemlz/

David Montero Loaiza 98 Jan 02, 2023
A tool to enhance your old/damaged pictures built using python & opencv.

Breathe Life into your Old Pictures Table of Contents About The Project Getting Started Prerequisites Usage Contact Acknowledgments About The Project

Shah Anwaar Khalid 5 Dec 16, 2021
A curated list of papers, code and resources pertaining to image composition

A curated list of resources including papers, datasets, and relevant links pertaining to image composition.

BCMI 391 Dec 30, 2022
This repository lets you train neural networks models for performing end-to-end full-page handwriting recognition using the Apache MXNet deep learning frameworks on the IAM Dataset.

Handwritten Text Recognition (OCR) with MXNet Gluon These notebooks have been created by Jonathan Chung, as part of his internship as Applied Scientis

Amazon Web Services - Labs 422 Jan 03, 2023
a deep learning model for page layout analysis / segmentation.

OCR Segmentation a deep learning model for page layout analysis / segmentation. dependencies tensorflow1.8 python3 dataset: uw3-framed-lines-degraded-

99 Dec 12, 2022