InverseRenderNet: Learning single image inverse rendering, CVPR 2019.

Overview

InverseRenderNet: Learning single image inverse rendering

!! Check out our new work InverseRenderNet++ paper and code, which improves the inverse rendering results and shadow handling.

This is the implementation of the paper "InverseRenderNet: Learning single image inverse rendering". The model is implemented in tensorflow.

If you use our code, please cite the following paper:

@inproceedings{yu19inverserendernet,
    title={InverseRenderNet: Learning single image inverse rendering},
    author={Yu, Ye and Smith, William AP},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2019}
}

Evaluation

Dependencies

To run our evaluation code, please create your environment based on following dependencies:

tensorflow 1.12.0
python 3.6
skimage
cv2
numpy

Pretrained model

  • Download our pretrained model from: Link
  • Unzip the downloaded file
  • Make sure the model files are placed in a folder named "irn_model"

Test on demo image

You can perform inverse rendering on random RGB image by our pretrained model. To run the demo code, you need to specify the path to pretrained model, path to RGB image and corresponding mask which masked out sky in the image. The mask can be generated by PSPNet, which you can find on https://github.com/hszhao/PSPNet. Finally inverse rendering results will be saved to the output folder named by your argument.

python3 test_demo.py --model /PATH/TO/irn_model --image demo.jpg --mask demo_mask.jpg --output test_results

Test on IIW

python3 test_iiw.py --model /PATH/TO/irn_model --iiw /PATH/TO/iiw-dataset

Training

Train from scratch

The training for InverseRenderNet contains two stages: pre-train and self-train.

  • To begin with pre-train stage, you need to use training command specifying option -m to pre-train.
  • After finishing pre-train stage, you can run self-train by specifying option -m to self-train.

In addition, you can control the size of batch in training, and the path to training data should be specified.

An example for training command:

python3 train.py -n 2 -p Data -m pre-train

Data for training

To directly use our code for training, you need to pre-process the training data to match the data format as shown in examples in Data folder.

In particular, we pre-process the data before training, such that five images with great overlaps are bundled up into one mini-batch, and images are resized and cropped to a shape of 200 * 200 pixels. Along with input images associated depth maps, camera parameters, sky masks and normal maps are stored in the same mini-batch. For efficiency, every mini-batch containing all training elements for 5 involved images are saved as a pickle file. While training the data feeding thread directly load each mini-batch from corresponding pickle file.

Owner
Ye Yu
Researcher in Computer Vision
Ye Yu
A simple QR-Code Reader in Python

A simple QR-Code Reader written in Python, that copies the content of a QR-Code directly into the copy clipboard.

Eric 1 Oct 28, 2021
The virtual calculator will be above the live streaming from your camera

The virtual calculator is above the live streaming from my camera usb , the program first detect my hand and in each frame calculate the distance between two finger ,if the distance is lower than the

gasbaoui mohammed al amine 5 Jul 01, 2022
🖺 OCR using tensorflow with attention

tensorflow-ocr 🖺 OCR using tensorflow with attention, batteries included Installation git clone --recursive http://github.com/pannous/tensorflow-ocr

646 Nov 11, 2022
Tensorflow-based CNN+LSTM trained with CTC-loss for OCR

Overview This collection demonstrates how to construct and train a deep, bidirectional stacked LSTM using CNN features as input with CTC loss to perfo

Jerod Weinman 489 Dec 21, 2022
Regions sanitàries (RS), Sectors Sanitàris (SS) i Àrees Bàsiques de Salut (ABS) de Catalunya

Regions sanitàries (RS), Sectors Sanitaris (SS), Àrees de Gestió Assistencial (AGA) i Àrees Bàsiques de Salut (ABS) de Catalunya Fitxers GeoJSON de le

Glòria Macià Muñoz 2 Jan 23, 2022
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
Use Youdao OCR API to covert your clipboard image to text.

Alfred Clipboard OCR 注:本仓库基于 oott123/alfred-clipboard-ocr 的逻辑用 Python 重写,换用了有道 AI 的 API,准确率更高,有效防止百度导致隐私泄露等问题,并且有道 AI 初始提供的 50 元体验金对于其资费而言个人用户基本可以永久使用

Junlin Liu 6 Sep 19, 2022
This is a GUI program which consist of 4 OpenCV projects

Tkinter-OpenCV Project Using Tkinter, Opencv, Mediapipe This is a python GUI program using Tkinter which consist of 4 OpenCV projects 1. Finger Counte

Arya Bagde 3 Feb 22, 2022
A Screen Translator/OCR Translator made by using Python and Tesseract, the user interface are made using Tkinter. All code written in python.

About An OCR translator tool. Made by me by utilizing Tesseract, compiled to .exe using pyinstaller. I made this program to learn more about python. I

Fauzan F A 41 Dec 30, 2022
Volume Control using OpenCV

Gesture-Volume-Control Volume Control using OpenCV Here i made volume control using Python and OpenCV in which we can control the volume of our laptop

Mudit Sinha 3 Oct 10, 2021
EQFace: An implementation of EQFace: A Simple Explicit Quality Network for Face Recognition

EQFace: A Simple Explicit Quality Network for Face Recognition The first face recognition network that generates explicit face quality online.

DeepCam Shenzhen 141 Dec 31, 2022
This is the implementation of the paper "Gated Recurrent Convolution Neural Network for OCR"

Gated Recurrent Convolution Neural Network for OCR This project is an implementation of the GRCNN for OCR. For details, please refer to the paper: htt

90 Dec 22, 2022
Lightning Fast Language Prediction 🚀

whatthelang Lightning Fast Language Prediction 🚀 Dependencies The dependencies can be installed using the requirements.txt file: $ pip install -r req

Indix 152 Oct 16, 2022
Table recognition inside douments using neural networks

TableTrainNet A simple project for training and testing table recognition in documents. This project was developed to make a neural network which reco

Giovanni Cavallin 93 Jul 24, 2022
Using Opencv ,based on Augmental Reality(AR) and will show the feature matching of image and then by finding its matching

Using Opencv ,this project is based on Augmental Reality(AR) and will show the feature matching of image and then by finding its matching ,it will just mask that image . This project ,if used in cctv

1 Feb 13, 2022
BNF Globalization Code (CVPR 2016)

Boundary Neural Fields Globalization This is the code for Boundary Neural Fields globalization method. The technical report of the method can be found

25 Apr 15, 2022
TextBoxes re-implement using tensorflow

TextBoxes-TensorFlow TextBoxes re-implementation using tensorflow. This project is greatly inspired by slim project And many functions are modified ba

Gu Xiaodong 44 Dec 29, 2022
Distort a video using Seam Carving (video) and Vibrato effect (sound)

Distort videos Applies a Seam Carving algorithm (aka liquid rescale) on every frame of a video, and a vibrato effect on the audio to distort the video

AlexZeGamer 6 Dec 06, 2022
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition PDF Abstract Explainable artificial intelligence has been gaining attention

87 Dec 26, 2022
An advanced 2D image manipulation with features such as edge detection and image segmentation built using OpenCV

OpenCV-ToothPaint3-Advanced-Digital-Image-Editor This application named ‘Tooth Paint’ version TP_2020.3 (64-bit) or version 3 was developed within a w

JunHong 1 Nov 05, 2021