Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Overview

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive"

This repository contains demo programs for the Talking Head Anime from a Single Image 2: More Expressive project. Similar to the previous version, it has two programs:

  • The manual_poser lets you manipulate the facial expression and the head rotation of an anime character, given in a single image, through a graphical user interface. The poser is available in two forms: a standard GUI application, and a Jupyter notebook.
  • The ifacialmocap_puppeteer lets you transfer your facial motion, captured by a commercial iOS application called iFacialMocap, to an image of an anime character.

Try the Manual Poser on Google Colab

If you do not have the required hardware (discussed below) or do not want to download the code and set up an environment to run it, click this link to try running the manual poser on Google Colab.

Hardware Requirements

Both programs require a recent and powerful Nvidia GPU to run. I could personally ran them at good speed with the Nvidia Titan RTX. However, I think recent high-end gaming GPUs such as the RTX 2080, the RTX 3080, or better would do just as well.

The ifacialmocap_puppeteer requires an iOS device that is capable of computing blend shape parameters from a video feed. This means that the device must be able to run iOS 11.0 or higher and must have a TrueDepth front-facing camera. (See this page for more info.) In other words, if you have the iPhone X or something better, you should be all set. Personally, I have used an iPhone 12 mini.

Software Requirements

Both programs were written in Python 3. To run the GUIs, the following software packages are required:

  • Python >= 3.8
  • PyTorch >= 1.7.1 with CUDA support
  • SciPY >= 1.6.0
  • wxPython >= 4.1.1
  • Matplotlib >= 3.3.4

In particular, I created the environment to run the programs with Anaconda, using the following commands:

> conda create -n talking-head-anime-2-demo python=3.8
> conda activate talking-head-anime-2-demo
> conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
> conda install scipy
> pip install wxPython
> conda install matplotlib

To run the Jupyter notebook version of the manual_poser, you also need:

  • Jupyter Notebook >= 6.2.0
  • IPyWidgets >= 7.6.3

This means that, in addition to the commands above, you also need to run:

> conda install -c conda-forge notebook
> conda install -c conda-forge ipywidgets
> jupyter nbextension enable --py widgetsnbextension

Lastly, the ifacialmocap_puppeteer requires iFacialMocap, which is available in the App Store for 980 yen. You also need to install the paired desktop application on your PC or Mac. (Linux users, I'm sorry!) Your iOS and your computer must also use the same network. (For example, you may connect them to the same wireless router.)

Automatic Environment Construction with Anaconda

You can also use Anaconda to download and install all Python packages in one command. Open your shell, change the directory to where you clone the repository, and run:

conda env create -f environment.yml

This will create an environment called talking-head-anime-2-demo containing all the required Python packages.

Download the Model

Before running the programs, you need to download the model files from this Dropbox link and unzip it to the data folder of the repository's directory. In the end, the data folder should look like:

+ data
  + illust
    - waifu_00.png
    - waifu_01.png
    - waifu_02.png
    - waifu_03.png
    - waifu_04.png
    - waifu_05.png
    - waifu_06.png
    - waifu_06_buggy.png
  - combiner.pt
  - eyebrow_decomposer.pt
  - eyebrow_morphing_combiner.pt
  - face_morpher.pt
  - two_algo_face_rotator.pt

The model files are distributed with the Creative Commons Attribution 4.0 International License, which means that you can use them for commercial purposes. However, if you distribute them, you must, among other things, say that I am the creator.

Running the manual_poser Desktop Application

Open a shell. Change your working directory to the repository's root directory. Then, run:

> python tha2/app/manual_poser.py

Note that before running the command above, you might have to activate the Python environment that contains the required packages. If you created an environment using Anaconda as was discussed above, you need to run

> conda activate talking-head-anime-2-demo

if you have not already activated the environment.

Running the manual_poser Jupyter Notebook

Open a shell. Activate the environment. Change your working directory to the repository's root directory. Then, run:

> jupyter notebook

A browser window should open. In it, open tha2.ipynb. Once you have done so, you should see that it only has one cell. Run it. Then, scroll down to the end of the document, and you'll see the GUI there.

Running the ifacialmocap_puppeteer

First, run iFacialMocap on your iOS device. It should show you the device's IP address. Jot it down. Keep the app open.

IP address in iFacialMocap screen

Then, run the companion desktop application.

iFaciaMocap desktop application

Click "Open Advanced Setting >>". The application should expand.

Click the 'Open Advanced Setting >>' button.

Click the button that says "Maya" on the right side.

Click the 'Maya' button.

Then, click "Blender."

Select 'Blender' mode in the desktop application

Next, replace the IP address on the left side with your iOS device's IP address.

Replace IP address with device's IP address.

Click "Connect to Blender."

Click 'Connect to Blender.'

Open a shell. Activate the environment. Change your working directory to the repository's root directory. Then, run:

> python tha2/app/ifacialmocap_puppeteer.py

If the programs are connected properly, you should see that the many progress bars at the bottom of the ifacialmocap_puppeteer window should move when you move your face in front of the iOS device's front-facing camera.

You should see the progress bars moving.

If all is well, load an character image, and it should follow your facial movement.

Constraints on Input Images

In order for the model to work well, the input image must obey the following constraints:

  • It must be of size 256 x 256.
  • It must be of PNG format.
  • It must have an alpha channel.
  • It must contain only one humanoid anime character.
  • The character must be looking straight ahead.
  • The head of the character should be roughly contained in the middle 128 x 128 box.
  • All pixels that do not belong to the character (i.e., background pixels) should have RGBA = (0,0,0,0).

Image specification

FAQ: I prepared an image just like you said, why is my output so ugly?!?

This is most likely because your image does not obey the "background RGBA = (0,0,0,0)" constraint. In other words, your background pixels are (RRR,GGG,BBB,0) for some RRR, GGG, BBB > 0 rather than (0,0,0,0). This happens when you use Photoshop because it does not clear the RGB channels of transparent pixels.

Let's see an example. When I tried to use the manual_poser with data/illust/waifu_06_buggy.png. Here's what I got.

A failure case

When you look at the image, there seems to be nothing wrong with it.

waifu_06_buggy.png

However, if you inspect it with GIMP, you will see that the RGB channels have what backgrounds, which means that those pixels have non-zero RGB values.

In the buggy image, background pixels have colors in the RGB channels.

What you want, instead, is something like the non-buggy version: data/illust/waifu_06.png, which looks exactly the same as the buggy one to the naked eyes.

waifu_06.png

However, in GIMP, all channels have black backgrounds.

In the good image, background pixels do not have colors in any channels.

Because of this, the output was clean.

A success case

A way to make sure that your image works well with the model is to prepare it with GIMP. When exporting your image to the PNG format, make sure to uncheck "Save color values from transparent pixels" before you hit "Export."

Make sure to uncheck 'Save color values from transparent pixels' before exporting!

Disclaimer

While the author is an employee of Google Japan, this software is not Google's product and is not supported by Google.

The copyright of this software belongs to me as I have requested it using the IARC process. However, Google might claim the rights to the intellectual property of this invention.

The code is released under the MIT license. The model is released under the Creative Commons Attribution 4.0 International License.

Owner
Pramook Khungurn
A software developer from Thailand, interested in computer graphics, machine learning, and algorithms.
Pramook Khungurn
Seonghwan Kim 24 Sep 11, 2022
Khandakar Muhtasim Ferdous Ruhan 1 Dec 30, 2021
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

Justin Terry 32 Nov 09, 2021
Chatbot with Pytorch, Python & Nextjs

Installation Instructions Make sure that you have Python 3, gcc, venv, and pip installed. Clone the repository $ git clone https://github.com/sahr

Rohit Sah 0 Dec 11, 2022
Text preprocessing, representation and visualization from zero to hero.

Text preprocessing, representation and visualization from zero to hero. From zero to hero • Installation • Getting Started • Examples • API • FAQ • Co

Jonathan Besomi 2.7k Jan 08, 2023
Develop open-source Python Arabic NLP libraries that the Arab world will easily use in all Natural Language Processing applications

Develop open-source Python Arabic NLP libraries that the Arab world will easily use in all Natural Language Processing applications

BADER ALABDAN 2 Oct 22, 2022
Phomber is infomation grathering tool that reverse search phone numbers and get their details, written in python3.

A Infomation Grathering tool that reverse search phone numbers and get their details ! What is phomber? Phomber is one of the best tools available fo

S41R4J 121 Dec 27, 2022
ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体

ChainKnowledgeGraph, 产业链知识图谱包括A股上市公司、行业和产品共3类实体,包括上市公司所属行业关系、行业上级关系、产品上游原材料关系、产品下游产品关系、公司主营产品、产品小类共6大类。 上市公司4,654家,行业511个,产品95,559条、上游材料56,824条,上级行业480条,下游产品390条,产品小类52,937条,所属行业3,946条。

liuhuanyong 415 Jan 06, 2023
GSoC'2021 | TensorFlow implementation of Wav2Vec2

GSoC'2021 | TensorFlow implementation of Wav2Vec2

Vasudev Gupta 73 Nov 28, 2022
MRC approach for Aspect-based Sentiment Analysis (ABSA)

B-MRC MRC approach for Aspect-based Sentiment Analysis (ABSA) Paper: Bidirectional Machine Reading Comprehension for Aspect Sentiment Triplet Extracti

Phuc Phan 1 Apr 05, 2022
PUA Programming Language written in Python.

pua-lang PUA Programming Language written in Python. Installation git clone https://github.com/zhaoyang97/pua-lang.git cd pua-lang pip install . Try

zy 4 Feb 19, 2022
TensorFlow code and pre-trained models for BERT

BERT ***** New March 11th, 2020: Smaller BERT Models ***** This is a release of 24 smaller BERT models (English only, uncased, trained with WordPiece

Google Research 32.9k Jan 08, 2023
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
source code for paper: WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

WhiteningBERT Source code and data for paper WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach. Preparation git clone https://github.com

49 Dec 17, 2022
CATs: Semantic Correspondence with Transformers

CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation

74 Dec 10, 2021
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
State-of-the-art NLP through transformer models in a modular design and consistent APIs.

Trapper (Transformers wRAPPER) Trapper is an NLP library that aims to make it easier to train transformer based models on downstream tasks. It wraps h

Open Business Software Solutions 42 Sep 21, 2022
A NLP program: tokenize method, PoS Tagging with deep learning

IRIS NLP SYSTEM A NLP program: tokenize method, PoS Tagging with deep learning Report Bug · Request Feature Table of Contents About The Project Built

Zakaria 7 Dec 13, 2022
An assignment from my grad-level data mining course demonstrating some experience with NLP/neural networks/Pytorch

NLP-Pytorch-Assignment An assignment from my grad-level data mining course (before I started personal projects) demonstrating some experience with NLP

David Thorne 0 Feb 06, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 A repository part of the MarIA project. Corpora 📃 Corpora Number of documents Number of tokens Size (GB) BNE 201,080,084

Plan de Tecnologías del Lenguaje - Gobierno de España 203 Dec 20, 2022