Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Overview

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive"

This repository contains demo programs for the Talking Head Anime from a Single Image 2: More Expressive project. Similar to the previous version, it has two programs:

  • The manual_poser lets you manipulate the facial expression and the head rotation of an anime character, given in a single image, through a graphical user interface. The poser is available in two forms: a standard GUI application, and a Jupyter notebook.
  • The ifacialmocap_puppeteer lets you transfer your facial motion, captured by a commercial iOS application called iFacialMocap, to an image of an anime character.

Try the Manual Poser on Google Colab

If you do not have the required hardware (discussed below) or do not want to download the code and set up an environment to run it, click this link to try running the manual poser on Google Colab.

Hardware Requirements

Both programs require a recent and powerful Nvidia GPU to run. I could personally ran them at good speed with the Nvidia Titan RTX. However, I think recent high-end gaming GPUs such as the RTX 2080, the RTX 3080, or better would do just as well.

The ifacialmocap_puppeteer requires an iOS device that is capable of computing blend shape parameters from a video feed. This means that the device must be able to run iOS 11.0 or higher and must have a TrueDepth front-facing camera. (See this page for more info.) In other words, if you have the iPhone X or something better, you should be all set. Personally, I have used an iPhone 12 mini.

Software Requirements

Both programs were written in Python 3. To run the GUIs, the following software packages are required:

  • Python >= 3.8
  • PyTorch >= 1.7.1 with CUDA support
  • SciPY >= 1.6.0
  • wxPython >= 4.1.1
  • Matplotlib >= 3.3.4

In particular, I created the environment to run the programs with Anaconda, using the following commands:

> conda create -n talking-head-anime-2-demo python=3.8
> conda activate talking-head-anime-2-demo
> conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
> conda install scipy
> pip install wxPython
> conda install matplotlib

To run the Jupyter notebook version of the manual_poser, you also need:

  • Jupyter Notebook >= 6.2.0
  • IPyWidgets >= 7.6.3

This means that, in addition to the commands above, you also need to run:

> conda install -c conda-forge notebook
> conda install -c conda-forge ipywidgets
> jupyter nbextension enable --py widgetsnbextension

Lastly, the ifacialmocap_puppeteer requires iFacialMocap, which is available in the App Store for 980 yen. You also need to install the paired desktop application on your PC or Mac. (Linux users, I'm sorry!) Your iOS and your computer must also use the same network. (For example, you may connect them to the same wireless router.)

Automatic Environment Construction with Anaconda

You can also use Anaconda to download and install all Python packages in one command. Open your shell, change the directory to where you clone the repository, and run:

conda env create -f environment.yml

This will create an environment called talking-head-anime-2-demo containing all the required Python packages.

Download the Model

Before running the programs, you need to download the model files from this Dropbox link and unzip it to the data folder of the repository's directory. In the end, the data folder should look like:

+ data
  + illust
    - waifu_00.png
    - waifu_01.png
    - waifu_02.png
    - waifu_03.png
    - waifu_04.png
    - waifu_05.png
    - waifu_06.png
    - waifu_06_buggy.png
  - combiner.pt
  - eyebrow_decomposer.pt
  - eyebrow_morphing_combiner.pt
  - face_morpher.pt
  - two_algo_face_rotator.pt

The model files are distributed with the Creative Commons Attribution 4.0 International License, which means that you can use them for commercial purposes. However, if you distribute them, you must, among other things, say that I am the creator.

Running the manual_poser Desktop Application

Open a shell. Change your working directory to the repository's root directory. Then, run:

> python tha2/app/manual_poser.py

Note that before running the command above, you might have to activate the Python environment that contains the required packages. If you created an environment using Anaconda as was discussed above, you need to run

> conda activate talking-head-anime-2-demo

if you have not already activated the environment.

Running the manual_poser Jupyter Notebook

Open a shell. Activate the environment. Change your working directory to the repository's root directory. Then, run:

> jupyter notebook

A browser window should open. In it, open tha2.ipynb. Once you have done so, you should see that it only has one cell. Run it. Then, scroll down to the end of the document, and you'll see the GUI there.

Running the ifacialmocap_puppeteer

First, run iFacialMocap on your iOS device. It should show you the device's IP address. Jot it down. Keep the app open.

IP address in iFacialMocap screen

Then, run the companion desktop application.

iFaciaMocap desktop application

Click "Open Advanced Setting >>". The application should expand.

Click the 'Open Advanced Setting >>' button.

Click the button that says "Maya" on the right side.

Click the 'Maya' button.

Then, click "Blender."

Select 'Blender' mode in the desktop application

Next, replace the IP address on the left side with your iOS device's IP address.

Replace IP address with device's IP address.

Click "Connect to Blender."

Click 'Connect to Blender.'

Open a shell. Activate the environment. Change your working directory to the repository's root directory. Then, run:

> python tha2/app/ifacialmocap_puppeteer.py

If the programs are connected properly, you should see that the many progress bars at the bottom of the ifacialmocap_puppeteer window should move when you move your face in front of the iOS device's front-facing camera.

You should see the progress bars moving.

If all is well, load an character image, and it should follow your facial movement.

Constraints on Input Images

In order for the model to work well, the input image must obey the following constraints:

  • It must be of size 256 x 256.
  • It must be of PNG format.
  • It must have an alpha channel.
  • It must contain only one humanoid anime character.
  • The character must be looking straight ahead.
  • The head of the character should be roughly contained in the middle 128 x 128 box.
  • All pixels that do not belong to the character (i.e., background pixels) should have RGBA = (0,0,0,0).

Image specification

FAQ: I prepared an image just like you said, why is my output so ugly?!?

This is most likely because your image does not obey the "background RGBA = (0,0,0,0)" constraint. In other words, your background pixels are (RRR,GGG,BBB,0) for some RRR, GGG, BBB > 0 rather than (0,0,0,0). This happens when you use Photoshop because it does not clear the RGB channels of transparent pixels.

Let's see an example. When I tried to use the manual_poser with data/illust/waifu_06_buggy.png. Here's what I got.

A failure case

When you look at the image, there seems to be nothing wrong with it.

waifu_06_buggy.png

However, if you inspect it with GIMP, you will see that the RGB channels have what backgrounds, which means that those pixels have non-zero RGB values.

In the buggy image, background pixels have colors in the RGB channels.

What you want, instead, is something like the non-buggy version: data/illust/waifu_06.png, which looks exactly the same as the buggy one to the naked eyes.

waifu_06.png

However, in GIMP, all channels have black backgrounds.

In the good image, background pixels do not have colors in any channels.

Because of this, the output was clean.

A success case

A way to make sure that your image works well with the model is to prepare it with GIMP. When exporting your image to the PNG format, make sure to uncheck "Save color values from transparent pixels" before you hit "Export."

Make sure to uncheck 'Save color values from transparent pixels' before exporting!

Disclaimer

While the author is an employee of Google Japan, this software is not Google's product and is not supported by Google.

The copyright of this software belongs to me as I have requested it using the IARC process. However, Google might claim the rights to the intellectual property of this invention.

The code is released under the MIT license. The model is released under the Creative Commons Attribution 4.0 International License.

Owner
Pramook Khungurn
A software developer from Thailand, interested in computer graphics, machine learning, and algorithms.
Pramook Khungurn
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

The Easy-to-use Dialogue Response Selection Toolkit for Researchers

GMFTBY 32 Nov 13, 2022
This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection"

Splinter This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection", to

Ori Ram 88 Dec 31, 2022
Longformer: The Long-Document Transformer

Longformer Longformer and LongformerEncoderDecoder (LED) are pretrained transformer models for long documents. ***** New December 1st, 2020: Longforme

AI2 1.6k Dec 29, 2022
Almost State-of-the-art Text Generation library

Ps: we are adding transformer model soon Text Gen 🐐 Almost State-of-the-art Text Generation library Text gen is a python library that allow you build

Emeka boris ama 63 Jun 24, 2022
Korean Sentence Embedding Repository

Korean-Sentence-Embedding 🍭 Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides

80 Jan 02, 2023
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
Application for shadowing Chinese.

chinese-shadowing Simple APP for shadowing chinese. With this application, it is very easy to record yourself, play the sound recorded and listen to s

Thomas Hirtz 5 Sep 06, 2022
Trains an OpenNMT PyTorch model and SentencePiece tokenizer.

Trains an OpenNMT PyTorch model and SentencePiece tokenizer. Designed for use with Argos Translate and LibreTranslate.

Argos Open Tech 61 Dec 13, 2022
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
超轻量级bert的pytorch版本,大量中文注释,容易修改结构,持续更新

bert4pytorch 2021年8月27更新: 感谢大家的star,最近有小伙伴反映了一些小的bug,我也注意到了,奈何这个月工作上实在太忙,更新不及时,大约会在9月中旬集中更新一个只需要pip一下就完全可用的版本,然后会新添加一些关键注释。 再增加对抗训练的内容,更新一个完整的finetune

muqiu 317 Dec 18, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
A large-scale (194k), Multiple-Choice Question Answering (MCQA) dataset designed to address realworld medical entrance exam questions.

MedMCQA MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering A large-scale, Multiple-Choice Question Answe

MedMCQA 24 Nov 30, 2022
BERT score for text generation

BERTScore Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). News: Features to appear in

Tianyi 1k Jan 08, 2023
The training code for the 4th place model at MDX 2021 leaderboard A.

The training code for the 4th place model at MDX 2021 leaderboard A.

Chin-Yun Yu 32 Dec 18, 2022
基于GRU网络的句子判断程序/A program based on GRU network for judging sentences

SentencesJudger SentencesJudger 是一个基于GRU神经网络的句子判断程序,基本的功能是判断文章中的某一句话是否为一个优美的句子。 English 如何使用SentencesJudger 确认Python运行环境 安装pyTorch与LTP python3 -m pip

8 Mar 24, 2022
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine

Microsoft 7.8k Jan 09, 2023
This simple Python program calculates a love score based on your and your crush's full names in English

This simple Python program calculates a love score based on your and your crush's full names in English. There is no logic or reason in the calculation behind the love score. The calculation could ha

p.katekomol 1 Jan 24, 2022
Rootski - Full codebase for rootski.io (without the data)

📣 Welcome to the Rootski codebase! This is the codebase for the application run

Eric 20 Nov 18, 2022