Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Overview

UvA Deep Learning Tutorials

Note: To look at the notebooks in a nicer format, visit our RTD website: https://uvadlc-notebooks.readthedocs.io/en/latest/

Course website: https://uvadlc.github.io/
Course edition: Fall 2020 (Oct. 26 - Dec. 14)
Recordings: YouTube Playlist
Author: Phillip Lippe

For this year's course edition, we created a series of Jupyter notebooks that are designed to help you understanding the "theory" from the lectures by seeing corresponding implementations. We will visit various topics such as optimization techniques, graph neural networks, adversarial attacks and normalizing flows (for a full list, see below). The notebooks are there to help you understand the material and teach you details of the PyTorch framework, including PyTorch Lightning.

The notebooks are presented in the second hour of each lecture slot. During the tutorial sessions, we will present the content and explain the implementation of the notebooks. You can decide yourself rather you just want to look at the filled notebook, want to try it yourself, or code along during the practical session. We do not have any mandatory assignments on which you would be graded or similarly. However, we encourage you to get familiar with the notebooks and experiment or extend them yourself.

How to run the notebooks

On this website, you will find the notebooks exported into a HTML format so that you can read them from whatever device you prefer. However, we suggest that you also give them a try and run them yourself. There are three main ways of running the notebooks we recommend:

  • Locally on CPU: All notebooks are stored on the github repository that also builds this website. You can find them here: https://github.com/phlippe/uvadlc_notebooks/tree/master/docs/tutorial_notebooks. The notebooks are designed that you can execute them on common laptops without the necessity of a GPU. We provide pretrained models that are automatically downloaded when running the notebooks, or can manually be downloaoded from this Google Drive. The required disk space for the pretrained models and datasets is less than 1GB. To ensure that you have all the right python packages installed, we provide a conda environment in the same repository.

  • Google Colab: If you prefer to run the notebooks on a different platform than your own computer, or want to experiment with GPU support, we recommend using Google Colab. Each notebook on this documentation website has a badge with a link to open it on Google Colab. Remember to enable GPU support before running the notebook (Runtime -> Change runtime type). Each notebook can be executed independently, and doesn't require you to connect your Google Drive or similar. However, when closing the session, changes might be lost if you don't save it to your local computer or have copied the notebook to your Google Drive beforehand.

  • Lisa cluster: If you want to train your own (larger) neural networks based on the notebooks, you can make use of the Lisa cluster. However, this is only suggested if you really want to train a new model, and use the other two options to go through the discussion and analysis of the models. Lisa might not allow you with your student account to run jupyter notebooks directly on the gpu_shared partition. Instead, you can first convert the notebooks to a script using jupyter nbconvert --to script ...ipynb, and then start a job on Lisa for running the script. A few advices when running on Lisa:

    • Disable the tqdm statements in the notebook. Otherwise your slurm output file might overflow and be several MB large. In PyTorch Lightning, you can do this by setting progress_bar_refresh_rate=0 in the trainer.
    • Comment out the matplotlib plotting statements, or change :code:plt.show() to plt.savefig(...).

Tutorial-Lecture alignment

We will discuss 12 tutorials in total, each focusing on a different aspect of Deep Learning. The tutorials are spread across lectures, and we tried to cover something from every area. You can align the tutorials with the lectures as follows:

  • Lecture 1: Introduction to Deep Learning

    • Guide 1: Working with the Lisa cluster
    • Tutorial 2: Introduction to PyTorch
  • Lecture 2: Modular Learning

    • Tutorial 3: Activation functions
  • Lecture 3: Deep Learning Optimizations

    • Tutorial 4: Optimization and Initialization
  • Lecture 4: Convolutional Neural Networks

  • Lecture 5: Modern ConvNets

    • Tutorial 5: Inception, ResNet and DenseNet
  • Lecture 6: Recurrent Neural Networks

    • Tutorial 6: Transformers and Multi-Head Attention
  • Lecture 7: Graph Neural Networks

    • Tutorial 7: Graph Neural Networks
  • Lecture 8: Deep Generative Models

    • Tutorial 8: Deep Energy Models
  • Lecture 9: Deep Variational Inference

    • Tutorial 9: Deep Autoencoders
  • Lecture 10: Generative Adversarial Networks

    • Tutorial 10: Adversarial Attacks
  • Lecture 11: Advanced Generative Models

    • Tutorial 11: Normalizing Flows
    • Tutorial 12: Autoregressive Image Modeling
  • Lecture 12: Deep Stochastic Models

  • Lecture 13: Bayesian Deep Learning

  • Lecture 14: Deep Dynamics

Feedback, Questions or Contributions

This is the first time we present these tutorials during the Deep Learning course. As with any other project, small bugs and issues are expected. We appreciate any feedback from students, whether it is about a spelling mistake, implementation bug, or suggestions for improvements/additions to the notebooks. Please use the following link to submit feedback, or feel free to reach out to me directly per mail (p dot lippe at uva dot nl), or grab me during any TA session.

Owner
Phillip Lippe
PhD student at University of Amsterdam, QUVA Lab
Phillip Lippe
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
TabNet for fastai

TabNet for fastai This is an adaptation of TabNet (Attention-based network for tabular data) for fastai (=2.0) library. The original paper https://ar

Mikhail Grankin 116 Oct 21, 2022
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
Test-Time Personalization with a Transformer for Human Pose Estimation, NeurIPS 2021

Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation This is an official implementation of the NeurIPS 2021 paper: Trans

41 Nov 28, 2022
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

SegPC-2021 This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by

Datascience IIT-ISM 13 Dec 14, 2022
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
👨‍💻 run nanosaur in simulation with Gazebo/Ingnition

🦕 👨‍💻 nanosaur_gazebo nanosaur The smallest NVIDIA Jetson dinosaur robot, open-source, fully 3D printable, based on ROS2 & Isaac ROS. Designed & ma

nanosaur 9 Jul 19, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022