[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Overview

Context Encoders: Feature Learning by Inpainting

CVPR 2016

[Project Website] [Imagenet Results]

Sample results on held-out images:

teaser

This is the training code for our CVPR 2016 paper on Context Encoders for learning deep feature representation in an unsupervised manner by image inpainting. Context Encoders are trained jointly with reconstruction and adversarial loss. This repo contains quick demo, training/testing code for center region inpainting and training/testing code for arbitray random region inpainting. This code is adapted from an initial fork of Soumith's DCGAN implementation. Scroll down to try out a quick demo or train your own inpainting models!

If you find Context Encoders useful in your research, please cite:

@inproceedings{pathakCVPR16context,
    Author = {Pathak, Deepak and Kr\"ahenb\"uhl, Philipp and Donahue, Jeff and Darrell, Trevor and Efros, Alexei},
    Title = {Context Encoders: Feature Learning by Inpainting},
    Booktitle = {Computer Vision and Pattern Recognition ({CVPR})},
    Year = {2016}
}

Contents

  1. Semantic Inpainting Demo
  2. Train Context Encoders
  3. Download Features Caffemodel
  4. TensorFlow Implementation
  5. Project Website
  6. Download Dataset

1) Semantic Inpainting Demo

  1. Install Torch: http://torch.ch/docs/getting-started.html#_

  2. Clone the repository

git clone https://github.com/pathak22/context-encoder.git
  1. Demo
cd context-encoder
bash ./models/scripts/download_inpaintCenter_models.sh
# This will populate the `./models/` folder with trained models.

net=models/inpaintCenter/paris_inpaintCenter.t7 name=paris_result imDir=images/paris overlapPred=4 manualSeed=222 batchSize=21 gpu=1 th demo.lua
net=models/inpaintCenter/imagenet_inpaintCenter.t7 name=imagenet_result imDir=images/imagenet overlapPred=4 manualSeed=222 batchSize=21 gpu=1 th demo.lua
net=models/inpaintCenter/paris_inpaintCenter.t7 name=ucberkeley_result imDir=images/ucberkeley overlapPred=4 manualSeed=222 batchSize=4 gpu=1 th demo.lua
# Note: If you are running on cpu, use gpu=0
# Note: samples given in ./images/* are held-out images

2) Train Context Encoders

If you could successfully run the above demo, run following steps to train your own context encoder model for image inpainting.

  1. [Optional] Install Display Package as follows. If you don't want to install it, then set display=0 in train.lua.
luarocks install https://raw.githubusercontent.com/szym/display/master/display-scm-0.rockspec
cd ~
th -ldisplay.start 8000
# if working on server machine create tunnel: ssh -f -L 8000:localhost:8000 -N server_address.com
# on client side, open in browser: http://localhost:8000/
  1. Make the dataset folder.
mkdir -p /path_to_wherever_you_want/mydataset/train/images/
# put all training images inside mydataset/train/images/
mkdir -p /path_to_wherever_you_want/mydataset/val/images/
# put all val images inside mydataset/val/images/
cd context-encoder/
ln -sf /path_to_wherever_you_want/mydataset dataset
  1. Train the model
# For training center region inpainting model, run:
DATA_ROOT=dataset/train display_id=11 name=inpaintCenter overlapPred=4 wtl2=0.999 nBottleneck=4000 niter=500 loadSize=350 fineSize=128 gpu=1 th train.lua

# For training random region inpainting model, run:
DATA_ROOT=dataset/train display_id=11 name=inpaintRandomNoOverlap useOverlapPred=0 wtl2=0.999 nBottleneck=4000 niter=500 loadSize=350 fineSize=128 gpu=1 th train_random.lua
# or use fineSize=64 to train to generate 64x64 sized image (results are better):
DATA_ROOT=dataset/train display_id=11 name=inpaintRandomNoOverlap useOverlapPred=0 wtl2=0.999 nBottleneck=4000 niter=500 loadSize=350 fineSize=64 gpu=1 th train_random.lua
  1. Test the model
# For training center region inpainting model, run:
DATA_ROOT=dataset/val net=checkpoints/inpaintCenter_500_net_G.t7 name=test_patch overlapPred=4 manualSeed=222 batchSize=30 loadSize=350 gpu=1 th test.lua
DATA_ROOT=dataset/val net=checkpoints/inpaintCenter_500_net_G.t7 name=test_full overlapPred=4 manualSeed=222 batchSize=30 loadSize=129 gpu=1 th test.lua

# For testing random region inpainting model, run (with fineSize=64 or 124, same as training):
DATA_ROOT=dataset/val net=checkpoints/inpaintRandomNoOverlap_500_net_G.t7 name=test_patch_random useOverlapPred=0 manualSeed=222 batchSize=30 loadSize=350 gpu=1 th test_random.lua
DATA_ROOT=dataset/val net=checkpoints/inpaintRandomNoOverlap_500_net_G.t7 name=test_full_random useOverlapPred=0 manualSeed=222 batchSize=30 loadSize=129 gpu=1 th test_random.lua

3) Download Features Caffemodel

Features for context encoder trained with reconstruction loss.

4) TensorFlow Implementation

Checkout the TensorFlow implementation of our paper by Taeksoo here. However, it does not implement full functionalities of our paper.

5) Project Website

Click here.

6) Paris Street-View Dataset

Please email me if you need the dataset and I will share a private link with you. I can't post the public link to this dataset due to the policy restrictions from Google Street View.

Owner
Deepak Pathak
Assistant Professor, CMU; (PhD @ UC Berkeley and BTech CS @ IIT Kanpur)
Deepak Pathak
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

Kim Seonghyeon 502 Jan 03, 2023
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
Minimalist Error collection Service compatible with Rollbar clients. Sentry or Rollbar alternative.

Minimalist Error collection Service Features Compatible with any Rollbar client(see https://docs.rollbar.com/docs). Just change the endpoint URL to yo

Haukur Rósinkranz 381 Nov 11, 2022
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022