Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

Overview

SemanticGAN

This is the official code for:

Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization

Daiqing Li, Junlin Yang, Karsten Kreis, Antonio Torralba, Sanja Fidler

CVPR 2021 [Paper] [Supp] [Page]

Requirements

  • Python 3.6 or 3.7 are supported.
  • Pytorch 1.4.0 + is recommended.
  • This code is tested with CUDA 10.2 toolkit and CuDNN 7.5.
  • Please check the python package requirement from requirements.txt, and install using
pip install -r requirements.txt

Training

To reproduce paper Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization:

  1. Run Step1: Semantic GAN training
  2. Run Step2: Encoder training
  3. Run Inference & Optimization.

0. Prepare for FID calculation

In order to calculate FID score, you need to prepare inception features for your dataset,

python prepare_inception.py \
--size [resolution of the image] \
--batch [batch size] \
--output [path to save the inception file, in .pkl] \
--dataset_name celeba-mask \
[positional argument 1, path to the image folder]] \

1. GAN Training

For training GAN with both image and its label,

python train_seg_gan.py \
--img_dataset [path-to-img-folder] \
--seg_dataset [path-to-seg-folder] \
--inception [path-to-inception file] \
--seg_name celeba-mask \
--checkpoint_dir [path-to-ckpt-dir] \

To use multi-gpus training in the cloud,

python -m torch.distributed.launch \
--nproc_per_node=N_GPU \
--master_port=PORTtrain_gan.py \
train_gan.py \
--img_dataset [path-to-img-folder] \
--inception [path-to-inception file] \
--dataset_name celeba-mask \
--checkpoint_dir [path-to-ckpt-dir] \

2. Encoder Triaining

python train_enc.py \
--img_dataset [path-to-img-folder] \
--seg_dataset [path-to-seg-folder] \
--ckpt [path-to-pretrained GAN model] \
--seg_name celeba-mask \
--enc_backboend [fpn|res] \
--checkpoint_dir [path-to-ckpt-dir] \

Inference

For Face Parts Segmentation Task

img

python inference.py \
--ckpt [path-to-ckpt] \
--img_dir [path-to-test-folder] \
--outdir [path-to-output-folder] \
--dataset_name celeba-mask \
--w_plus \
--image_mode RGB \
--seg_dim 8 \
--step 200 [optimization steps] \

Visualization of different optimization steps

img

Citation

Please cite the following paper if you used the code in this repository.

@inproceedings{semanticGAN, 
title={Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization}, 
booktitle={Conference on Computer Vision and Pattern Recognition (CVPR)}, 
author={Li, Daiqing and Yang, Junlin and Kreis, Karsten and Torralba, Antonio and Fidler, Sanja}, 
year={2021}, 
}

License

For any code dependency related to Stylegan2, the license is under the Nvidia Source Code License-NC. To view a copy of this license, visit https://nvlabs.github.io/stylegan2/license.html

The work SemanticGAN is released under MIT License.

The MIT License (MIT)

Copyright (c) 2021 NVIDIA Corporation. 

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
Python Jupyter kernel using Poetry for reproducible notebooks

Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id

Pathbird 204 Jan 04, 2023
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
Like a cowsay but without cows!

Foxsay This is a simple program that generates pictures of a cute fox with a message. It is like a cowsay but without cows! Fox girls are better! Usag

Anastasia Kim 28 Feb 20, 2022
Temporal-Relational CrossTransformers

Temporal-Relational Cross-Transformers (TRX) This repo contains code for the method introduced in the paper: Temporal-Relational CrossTransformers for

83 Dec 12, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams.

Mutli-agent task allocation This code uses generative adversarial networks to generate diverse task allocation plans for Multi-agent teams. To change

Biorobotics Lab 5 Oct 12, 2022
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED)

osed-scripts bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED) Table of Contents Standalone Scripts egghunter.py fin

epi 268 Jan 05, 2023
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022