Meta graph convolutional neural network-assisted resilient swarm communications

Overview

Resilient UAV Swarm Communications with Graph Convolutional Neural Network

This repository contains the source codes of

Resilient UAV Swarm Communications with Graph Convolutional Neural Network

Zhiyu Mou, Feifei Gao, Jun Liu, and Qihui Wu

Fei-Lab

Problem Descriptions

In this paper, we study the self-healing of communication connectivity (SCC) problem of unmanned aerial vehicle (UAV) swarm network (USNET) that is required to quickly rebuild the communication connectivity under unpredictable external destructions (UEDs). Firstly, to cope with the one-off UEDs, we propose a graph convolutional neural network (GCN) and find the recovery topology of the USNET in an on-line manner. Secondly, to cope with general UEDs, we develop a GCN based trajectory planning algorithm that can make UAVs rebuild the communication connectivity during the self-healing process. We also design a meta learning scheme to facilitate the on-line executions of the GCN. Numerical results show that the proposed algorithms can rebuild the communication connectivity of the USNET more quickly than the existing algorithms under both one-off UEDs and general UEDs. The simulation results also show that the meta learning scheme can not only enhance the performance of the GCN but also reduce the time complexity of the on-line executions.

Display of Main Results Demo

One-off UEDs

randomly destruct 150 UAVs                             randomly destruct 100 UAVs

150 100

General UEDs

general UEDs with global information           general UEDs with monitoring mechanism

general_global_info general

Note: these are gifs. It may take a few seconds to display. You can refresh the page if they cannot display normally. Or you can view them in ./video.

Environment Requirements

pytorch==1.6.0
torchvision==0.7.0
numpy==1.18.5
matplotlib==3.2.2
pandas==1.0.5
seaborn==0.10.1
cuda supports and GPU acceleration

Note: other versions of the required packages may also work.

The machine we use

CPU: Intel(R) Core(TM) i7-10700K CPU @ 3.80GHz
GPU: NVIDIA GeForce RTX 3090

Necessary Supplementary Downloads

As some of the necessary configuration files, including .xlsx and .npy files can not be uploaded to the github, we upload these files to the clouds. Anyone trying to run these codes need to download the necessary files.

Download initial UAV positions (necessary)

To make the codes reproducible, you need to download the initial positions of UAVs we used in the experiment from https://cloud.tsinghua.edu.cn/f/c18807be55634378b30f/ or https://drive.google.com/file/d/1q1J-F2OAY_VDaNd1DWCfy_N2loN7o1XV/view?usp=sharing. Upzip the download files to ./Configurations/.

Download Trained Meta Parameters (alternative, but if using meta learning without training again, then necessary)

Since the total size of meta parameters is about 1.2GB, we have uploaded the meta parameters to https://cloud.tsinghua.edu.cn/f/2cb28934bd9f4bf1bdd7/ and https://drive.google.com/file/d/1QPipenDZi_JctNH3oyHwUXsO7QwNnLOz/view?usp=sharing. You need to download the file from either two links and unzip them to ./Meta_Learning_Results/meta_parameters/if you want to use the trained meta parameters. Otherwise, you need to train the meta parameters again (directly run Meta-learning_all.py)

Download Meta Learning Loss Functions Pictures (alternative)

The loss function pictures of meta learning are available on https://cloud.tsinghua.edu.cn/f/fc0d84f2c6374e29bcbe/ and https://drive.google.com/file/d/1cdceleZWyXcD1GxOPCYlLsRVTwNRWPBy/view?usp=sharing. You can store them in ./Meta_Learning_Results/meta_loss_pic/

Quick Start

Simulate SCC under one-off UEDs

directly run ./Experiment_One_off_UED.py

python Experiment_One_off_UED.py

Simulate meta learning process

directly run ./Meta-learning_all.py

python Meta-learning_all.py

Simulate SCC under general UEDs

directly run ./Experiment_General_UED.py

python Experiment_General_UED.py

File and Directory Explanations

  • ./Configurations/

the initial positions of 200 UAVs

  • ./Drawing/

the drawing functions

  • ./Experiment_Fig/

the experiment figures and the drawing source codes

  • ./Main_algorithm_GCN/

the proposed algorithms in the paper

  • ./Main_algorithm_GCN/CR_MGC.py

the CR-MGC algorithm (Algorithm 2 in the paper)

  • ./Main_algorithm_GCN/GCO.py

the GCO algorithm

  • ./Main_algorithm_GCN/Smallest_d_algorithm.py

algorithm of finding the smallest distance to make the RUAV graph a CCN (Algorithm 1 in the paper)

  • ./Meta_Learning_Results/

the results of meta learning

  • ./Meta_Learning_Results/meta_loss_pic

the loss function pictures of 199 mGCNs

  • ./Meta_Learning_Results/meta_parameters

the meta parameters (Since the total size of meta parameters is about 1.2GB, we have uploaded the meta parameters to https://cloud.tsinghua.edu.cn/f/2cb28934bd9f4bf1bdd7/ or https://drive.google.com/file/d/1QPipenDZi_JctNH3oyHwUXsO7QwNnLOz/view?usp=sharing)

  • ./Traditional_Algorithm/

the implementations of traditional algorithms

  • ./video/

the gif files of one-off UEDs

  • ./Configurations.py

the simulation parameters

  • ./Environment.py

the Environment generating UEDs

  • ./Experiment_General_UED.py/

the simulation under general UEDs

  • ./Experiment_One_off_UED.py/

the simulation under one-off UEDs

  • ./Experiment_One_off_UED_draw_Fig_12_d.py/

draw the Fig. 12(d) in the simulation under one-off UEDs

  • ./Meta-learning_all.py/

the meta learning

  • ./Swarm.py/

the integration of algorithms under one-off UEDs

  • ./Swarm_general.py/

the integration of algorithms under general UEDs

  • ./Utils.py/

the utility functions

Note that some unnecessary drawing codes used in the paper are not uploaded to this responsitory.

smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al

smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou

0 Oct 15, 2021
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
LaBERT - A length-controllable and non-autoregressive image captioning model.

Length-Controllable Image Captioning (ECCV2020) This repo provides the implemetation of the paper Length-Controllable Image Captioning. Install conda

bearcatt 53 Nov 13, 2022
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Rishik Mourya 48 Dec 20, 2022
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python

Python Experiments A Repository which contains python scripts to automate things

Vivek Kumar Singh 11 Sep 25, 2022
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022