An NUS timetable generator which uses a genetic algorithm to optimise timetables to suit the needs of NUS students.

Overview

Where Got Time(table)?

A timetable optimiser for NUS which uses an evolutionary algorithm to "breed" a timetable suited to your needs.



Try it out here!

Inspiration

Planning the best fit timetable to suit our needs can be an absolute nightmare. Different sets of modules can result in a seemingly limitless combinations of timetable. Comparing and choosing the best timetable can take hours or even days. The struggle is real

Having chanced upon an article on genetic algorithm, we thought that this would be the best approach to tackling an optimization problem involving timetabling/scheduling. This project aims to provide the most optimized timetable given a set of pre-defined constraints.

What It Does

Users can input the following:

  • Modules codes for the particular semester
  • Adjustable start and end time
  • Select free days
  • Maximize lunch timings
  • Determine minimum hours of break between classes

Based on user inputs, the most optimized timetable is generated.





Why It Works

A Genetic Algorithm mimics the process of natural selection and evolution by combining the "elite" timetables to form the "next generation" of timetables.

The evolutionary process:

  1. Extracting, cleaning and generating our own data structure from NUSMods API
  2. Initialise the first generation which includes a population of timetables
  3. Grading each timetable with a fitness score
  4. Cross-over fittest "parents" to generate 2 "child" timetables with mutations
  5. Assign these timetables to the next generation
  6. Repeat this process until the fitness score across a generation converges
  7. If the soft and hard constraints were not met after reaching the generation limit, the most optimised timetable is returned to the user

How We Built It

Our main algorithm was written with Python. It utilizes NUSMods API to fetch the relevant module data. Some filtering and cleaning up of the data grants us a workable data structure. Implementation of the genetic algorithm returns a link that is sent to the web page which generates an image for the user.

Firstly, we generate a population of timetables. Using a scoring algorithm, we rate the fitness of each timetable. Timetables with a better fitness score gets to produce the next generation of timetables through cross-overs and mutation.

We repeat this process until the average fitness score of the entire generation converges to within a tolerance range. The fittest timetable from the final generation is returned to the user.

Challenges We Ran Into

Managing large data structures comes with confusing errors that are hard to pinpoint. NUS offers more than 6000 modules, some classes are fixed while others are variable. This results in multiple varying data structures for different modules. As such, our code needs to be robust enough to handle the unique data structures. Integration of front and backend code was much harder than expected.

Accomplishments We're Proud Of

We are proud to have come up with a minimum viable product.

What We Learned

As this is our first group project, we learnt how to work on Git Flow, how to push and pull information via Git and version control. One of us even deleted a whole file and had to rewrite from scratch We also learnt how to approach optimization problems and how to use the NUSMods API for parsing data into our program.

What's Next For Where Got Time(table)?

Improve the UI/UX of the landing page to facilitate better user experience. Allow more user constraints such as "Minimal Time Spent in School". We will further fine-tune the program which could possibly be used as an extension for the official NUSMods. A possible feature that can be added includes a GIF of the user's timetable evolving across generations from start to finish.

Try It Out

Where Got Time(table)?

Credits/Reference

Using Genetic Algorithm to Schedule Timetables

Owner
Nicholas Lee
Student
Nicholas Lee
The DarkRift2 networking framework written in Python 3

DarkRiftPy is Darkrift2 written in Python 3. The implementation is fully compatible with the original version. So you can write a client side on Python that connects to a Darkrift2 server written in

Anton Dobryakov 6 May 23, 2022
This python algorithm creates a simple house floor plan based on a user-provided CSV file.

This python algorithm creates a simple house floor plan based on a user-provided CSV file. The algorithm generates possible router placements and evaluates where a signal will be reached in every roo

Joshua Miller 1 Nov 12, 2021
Using A * search algorithm and GBFS search algorithm to solve the Romanian problem

Romanian-problem-using-Astar-and-GBFS Using A * search algorithm and GBFS search algorithm to solve the Romanian problem Romanian problem: The agent i

Mahdi Hassanzadeh 6 Nov 22, 2022
A calculator to test numbers against the collatz conjecture

The Collatz Calculator This is an algorithm custom built by Kyle Dickey, used to test numbers against the simple rules of the Collatz Conjecture. Get

Kyle Dickey 2 Jun 14, 2022
Greedy Algorithm-Problem Solving

MAX-MIN-Hackrrank-Python-Solution Greedy Algorithm-Problem Solving You will be given a list of integers, , and a single integer . You must create an a

Mahesh Nagargoje 3 Jul 13, 2021
Repository for Comparison based sorting algorithms in python

Repository for Comparison based sorting algorithms in python. This was implemented for project one submission for ITCS 6114 Data Structures and Algorithms under the guidance of Dr. Dewan at the Unive

Devashri Khagesh Gadgil 1 Dec 20, 2021
FingerPy is a algorithm to measure, analyse and monitor heart-beat using only a video of the user's finger on a mobile cellphone camera.

FingerPy is a algorithm using python, scipy and fft to measure, analyse and monitor heart-beat using only a video of the user's finger on a m

Thiago S. Brasil 37 Oct 21, 2022
Pathfinding visualizer in pygame: A*

Pathfinding Visualizer A* What is this A* algorithm ? Simply put, it is an algorithm that aims to find the shortest possible path between two location

0 Feb 26, 2022
A simple python implementation of A* and bfs algorithm solving Eight-Puzzle

A simple python implementation of A* and bfs algorithm solving Eight-Puzzle

2 May 22, 2022
Primedice like provably fair algorithm

Primedice like provably fair algorithm

Ryu juheon 3 Dec 02, 2022
Our implementation of Gillespie's Stochastic Simulation Algorithm (SSA)

SSA Our implementation of Gillespie's Stochastic Simulation Algorithm (SSA) Requirements python =3.7 numpy pandas matplotlib pyyaml Command line usag

Anoop Lab 1 Jan 27, 2022
This repository explores an implementation of Grover's Algorithm for knights on a chessboard.

Grover Knights Welcome to my Knights project! Project Description: I explore an implementation of a quantum oracle for knights on a chessboard.

Will Sun 8 Feb 22, 2022
A collection of design patterns/idioms in Python

python-patterns A collection of design patterns and idioms in Python. Current Patterns Creational Patterns: Pattern Description abstract_factory use a

Sakis Kasampalis 36.2k Jan 05, 2023
Path finding algorithm visualizer with python

path-finding-algorithm-visualizer ~ click on the grid to place the starting block and then click elsewhere to add the end block ~ click again to place

izumi 1 Oct 31, 2021
A Python description of the Kinematic Bicycle Model with an animated example.

Kinematic Bicycle Model Abstract A python library for the Kinematic Bicycle model. The Kinematic Bicycle is a compromise between the non-linear and li

Winston H. 36 Dec 23, 2022
Multiple Imputation with Random Forests in Python

miceforest: Fast, Memory Efficient Imputation with lightgbm Fast, memory efficient Multiple Imputation by Chained Equations (MICE) with lightgbm. The

Samuel Wilson 202 Dec 31, 2022
Slight modification to one of the Facebook Salina examples, to test the A2C algorithm on financial series.

Facebook Salina - Gym_AnyTrading Slight modification of Facebook Salina Reinforcement Learning - A2C GPU example for financial series. The gym FOREX d

Francesco Bardozzo 5 Mar 14, 2022
BCI datasets and algorithms

Brainda Welcome! First and foremost, Welcome! Thank you for visiting the Brainda repository which was initially released at this repo and reorganized

52 Jan 04, 2023
A fast python implementation of the SimHash algorithm.

This Python package provides hashing algorithms for computing cohort ids of users based on their browsing history. As such, it may be used to compute cohort ids of users following Google's Federated

Hybrid Theory 19 Dec 15, 2022
A minimal implementation of the IQRM interference flagging algorithm for radio pulsar and transient searches

A minimal implementation of the IQRM interference flagging algorithm for radio pulsar and transient searches. This module only provides the algorithm that infers a channel mask from some spectral sta

Vincent Morello 6 Nov 29, 2022