Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

Related tags

Deep Learningtf-imle
Overview

tf-imle

Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021 paper Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions.

I-MLE is also available as a PyTorch library: https://github.com/uclnlp/torch-imle

Introduction

Implicit MLE (I-MLE) makes it possible to include discrete combinatorial optimization algorithms, such as Dijkstra's algorithm or integer linear programming (ILP) solvers, as well as complex discrete probability distributions in standard deep learning architectures. The figure below illustrates the setting I-MLE was developed for. is a standard neural network, mapping some input to the input parameters of a discrete combinatorial optimization algorithm or a discrete probability distribution, depicted as the black box. In the forward pass, the discrete component is executed and its discrete output fed into a downstream neural network . Now, with I-MLE it is possible to estimate gradients of with respect to a loss function, which are used during backpropagation to update the parameters of the upstream neural network.

Illustration of the problem addressed by I-MLE

The core idea of I-MLE is that it defines an implicit maximum likelihood objective whose gradients are used to update upstream parameters of the model. Every instance of I-MLE requires two ingredients:

  1. A method to approximately sample from a complex and possibly intractable distribution. For this we use Perturb-and-MAP (aka the Gumbel-max trick) and propose a novel family of noise perturbations tailored to the problem at hand.
  2. A method to compute a surrogate empirical distribution: Vanilla MLE reduces the KL divergence between the current distribution and the empirical distribution. Since in our setting, we do not have access to such an empirical distribution, we have to design surrogate empirical distributions which we term target distributions. Here we propose two families of target distributions which are widely applicable and work well in practice.

Requirements:

TensorFlow 2 implementation:

  • tensorflow==2.3.0 or tensorflow-gpu==2.3.0
  • numpy==1.18.5
  • matplotlib==3.1.1
  • scikit-learn==0.24.1
  • tensorflow-probability==0.7.0

PyTorch implementation:

Example: I-MLE as a Layer

The following is an instance of I-MLE implemented as a layer. This is a class where the optimization problem is computing the k-subset configuration, the target distribution is based on perturbation-based implicit differentiation, and the perturb-and-MAP noise perturbations are drawn from the sum-of-gamma distribution.

class IMLESubsetkLayer(tf.keras.layers.Layer):
    
    def __init__(self, k, _tau=10.0, _lambda=10.0):
        super(IMLESubsetkLayer, self).__init__()
        # average number of 1s in a solution to the optimization problem
        self.k = k
        # the temperature at which we want to sample
        self._tau = _tau
        # the perturbation strength (here we use a target distribution based on perturbation-based implicit differentiation
        self._lambda = _lambda  
        # the samples we store for the backward pass
        self.samples = None 
        
    @tf.function
    def sample_sum_of_gamma(self, shape):
        
        s = tf.map_fn(fn=lambda t: tf.random.gamma(shape, 1.0/self.k, self.k/t), 
                  elems=tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]))   
        # now add the samples
        s = tf.reduce_sum(s, 0)
        # the log(m) term
        s = s - tf.math.log(10.0)
        # divide by k --> each s[c] has k samples whose sum is distributed as Gumbel(0, 1)
        s = self._tau * (s / self.k)

        return s
    
    @tf.function
    def sample_discrete_forward(self, logits): 
        self.samples = self.sample_sum_of_gamma(tf.shape(logits))
        gamma_perturbed_logits = logits + self.samples
        # gamma_perturbed_logits is the input to the combinatorial opt algorithm
        # the next two lines can be replaced by a custom black-box algorithm call
        threshold = tf.expand_dims(tf.nn.top_k(gamma_perturbed_logits, self.k, sorted=True)[0][:,-1], -1)
        y = tf.cast(tf.greater_equal(gamma_perturbed_logits, threshold), tf.float32)
        
        return y
    
    @tf.function
    def sample_discrete_backward(self, logits):     
        gamma_perturbed_logits = logits + self.samples
        # gamma_perturbed_logits is the input to the combinatorial opt algorithm
        # the next two lines can be replaced by a custom black-box algorithm call
        threshold = tf.expand_dims(tf.nn.top_k(gamma_perturbed_logits, self.k, sorted=True)[0][:,-1], -1)
        y = tf.cast(tf.greater_equal(gamma_perturbed_logits, threshold), tf.float32)
        return y
    
    @tf.custom_gradient
    def subset_k(self, logits, k):

        # sample discretely with perturb and map
        z_train = self.sample_discrete_forward(logits)
        # compute the top-k discrete values
        threshold = tf.expand_dims(tf.nn.top_k(logits, self.k, sorted=True)[0][:,-1], -1)
        z_test = tf.cast(tf.greater_equal(logits, threshold), tf.float32)
        # at training time we sample, at test time we take the argmax
        z_output = K.in_train_phase(z_train, z_test)
        
        def custom_grad(dy):

            # we perturb (implicit diff) and then resuse sample for perturb and MAP
            map_dy = self.sample_discrete_backward(logits - (self._lambda*dy))
            # we now compute the gradients as the difference (I-MLE gradients)
            grad = tf.math.subtract(z_train, map_dy)
            # return the gradient            
            return grad, k

        return z_output, custom_grad

Reference

@inproceedings{niepert21imle,
  author    = {Mathias Niepert and
               Pasquale Minervini and
               Luca Franceschi},
  title     = {Implicit {MLE:} Backpropagating Through Discrete Exponential Family
               Distributions},
  booktitle = {NeurIPS},
  series    = {Proceedings of Machine Learning Research},
  publisher = {{PMLR}},
  year      = {2021}
}
Owner
NEC Laboratories Europe
Research software developed at NEC Laboratories Europe
NEC Laboratories Europe
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
Notepy is a full-featured Notepad Python app

Notepy A full featured python text-editor Notable features Autocompletion for parenthesis and quote Auto identation Syntax highlighting Compile and ru

Mirko Rovere 11 Sep 28, 2022
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
B-cos Networks: Attention is All we Need for Interpretability

Convolutional Dynamic Alignment Networks for Interpretable Classifications M. Böhle, M. Fritz, B. Schiele. B-cos Networks: Alignment is All we Need fo

58 Dec 23, 2022
Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023