Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

Related tags

Deep LearningBiDR
Overview

BiDR

Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval.

Requirements

torch==1.7
transformers==4.6
faiss-gpu==1.6.4.post2

Data Download and Preprocess

bash download_data.sh
python preprocess.py

These commands will download and preprocess the MSMARCO Passage and Doc dataset, then the resutls will be saved to ./data.
We take the Passage dataset as the example to show the running workflow.

Conventional Workflow

Representation Learning

Train the encoder with random negative (or set --hardneg_json to provied bm25/hard negatives) :

mkdir log
dataset=passage
savename=dense_global_model
python train.py --model_name_or_path roberta-base \
--max_query_length 24 --max_doc_length 128 \
--data_dir ./data/${dataset}/preprocess \
--learning_rate 1e-4 --optimizer_str adamw \
--per_device_train_batch_size 128 \
--per_query_neg_num 1 \
--generate_batch_method random \
--loss_method multi_ce  \
--savename ${savename} --save_model_path ./model \
--world_size 8 --gpu_rank 0_1_2_3_4_5_6_7  --master_port 13256 \
--num_train_epochs 30  \
--use_pq False \
|tee ./log/${savename}.log

Unsupervised Quantization

Generate dense embeddings of queries and docs:

data_type=passage
savename=dense_global_model
epoch=20
python ./inference.py \
--data_type ${data_type} \
--preprocess_dir ./data/${data_type}/preprocess/ \
--max_doc_length 256 --max_query_length 32 \
--eval_batch_size 512 \
--ckpt_path ./model/${savename}/${epoch}/ \
--output_dir  evaluate/${savename}_${epoch} 

Product Quantization based on Faiss and recall performance:

data_type=passage
savename=dense_global_model
epoch=20
python ./test/lightweight_ann.py \
--output_dir ./data/${data_type}/evaluate/${savename}_${epoch} \
--ckpt_path /model/${savename}/${epoch}/ \
--subvector_num 96 \
--index opq \
--topk 1000 \
--data_type ${data_type} \
--MRR_cutoff 10 \
--Recall_cutoff 5 10 30 50 100

Progressively Optimized Bi-Granular Document Representation

Sparse Representation Learning

Instead of running unsupervised quantization for the well-learned dense embeddings, the sparse embeddings are generated from contrastive learning, which optimizes the global discrimination and helps to enable high-quality answers to be covered in candidate search.

Train

We find that using Faiss OPQ to initialize the PQ module has a significant gain for MSMARCO dataset. But for the largest dataset: Ads dataset, initialization with Faiss OPQ is redundant and has no promotion.

dataset=passage
savename=sparse_global_model
python train.py --model_name_or_path ./model/dense_global_model/20 \
--max_query_length 24 --max_doc_length 128 \
--data_dir ./data/${dataset}/preprocess \
--learning_rate 1e-4 --optimizer_str adamw \
--per_device_train_batch_size 128 \
--per_query_neg_num 1 \
--generate_batch_method random \
--loss_method multi_ce  \
--savename ${savename} --save_model_path ./model \
--world_size 8 --gpu_rank 0_1_2_3_4_5_6_7  --master_port 13256 \
--num_train_epochs 30  \
--use_pq True \
--init_index_path ./data/${data_type}/evaluate/dense_global_model_20/OPQ96,PQ96x8.index \
--partition 96 --centroids 256 --quantloss_weight 0.0 \
|tee ./log/${savename}.log

where the ./model/dense_global_model/20 and ./data/${data_type}/evaluate/dense_global_model_20/OPQ96,PQ96x8.index is generated by conventional workflow.

Test

data_type=passage
savename=sparse_global_model
epoch=20

python ./inference.py \
--data_type ${data_type} \
--preprocess_dir ./data/${data_type}/preprocess/ \
--max_doc_length 256 --max_query_length 32 \
--eval_batch_size 512 \
--ckpt_path ./model/${savename}/${epoch}/ \
--output_dir  evaluate/${savename}_${epoch} 

python ./test/lightweight_ann.py \
--output_dir ./data/${data_type}/evaluate/${savename}_${epoch} \
--subvector_num 96 \
--index opq \
--topk 1000 \
--data_type ${data_type} \
--MRR_cutoff 10 \
--Recall_cutoff 5 10 30 50 100 \
--ckpt_path ./model/${savename}/${epoch}/ \
--init_index_path ./data/${data_type}/evaluate/dense_global_model_20/OPQ96,PQ96x8.index

Dense Representation Learning

The dense embeddings are optimized based on the candidate distribution generated by sparse embeddings. We propose a novel sampling strategy called locality-centric sampling to enhance local discrimination: construct a bipartite proximity graph and conduct random walk or snow sample on it.

Train

Encode the quries in train set and generate the candidates for all train queries:

data_type=passage
savename=sparse_global_model
epoch=20

python ./inference.py \
--data_type ${data_type} \
--preprocess_dir ./data/${data_type}/preprocess/ \
--max_doc_length 256 --max_query_length 32 \
--eval_batch_size 512 \
--ckpt_path ./model/${savename}/${epoch}/ \
--output_dir  evaluate/${savename}_${epoch} \
--mode train

python ./test/lightweight_ann.py \
--output_dir ./data/${data_type}/evaluate/${savename}_${epoch} \
--subvector_num 96 \
--index opq \
--topk 1000 \
--data_type ${data_type} \
--MRR_cutoff 10 \
--Recall_cutoff 5 10 30 50 100 \
--ckpt_path ./model/${savename}/${epoch}/ \
--init_index_path ./data/${data_type}/evaluate/dense_global_model_20/OPQ96,PQ96x8.index \
--mode train \
--save_hardneg_to_json

This command will save the train_hardneg.json to output_dir. Then train the dense embeddings to distinguish the ground truth from the negative in candidate:

dataset=passage
savename=dense_local_model
python train.py --model_name_or_path roberta-base \
--max_query_length 24 --max_doc_length 128 \
--data_dir ./data/${dataset}/preprocess \
--learning_rate 1e-4 --optimizer_str adamw \
--per_device_train_batch_size 128 \
--per_query_neg_num 1 \
--generate_batch_method {random_walk or snow_sample} \
--loss_method multi_ce  \
--savename ${savename} --save_model_path ./model \
--world_size 8 --gpu_rank 0_1_2_3_4_5_6_7  --master_port 13256 \
--num_train_epochs 30  \
--use_pq False \
--hardneg_json ./data/${data_type}/evaluate/sparse_global_model_20/train_hardneg.json \
--mink 0  --maxk 200 \
|tee ./log/${savename}.log

Test

data_type=passage
savename=dense_local_model
epoch=10

python ./inference.py \
--data_type ${data_type} \
--preprocess_dir ./data/${data_type}/preprocess/ \
--ckpt_path ./model/${savename}/${epoch}/ \
--max_doc_length 256 --max_query_length 32 \
--eval_batch_size 512 \
--ckpt_path ./model/${savename}/${epoch}/ \
--output_dir  evaluate/${savename}_${epoch} 

python ./test/post_verification.py \
--data_type ${data_type} \
--output_dir  evaluate/${savename}_${epoch} \
--candidate_from_ann ./data/${data_type}/evaluate/sparse_global_model_20/dev.rank_1000_score_faiss_opq.tsv \
--MRR_cutoff 10 \
--Recall_cutoff 5 10 30 50 100

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Facebook Research 712 Dec 19, 2022
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023
Flexible Option Learning - NeurIPS 2021

Flexible Option Learning This repository contains code for the paper Flexible Option Learning presented as a Spotlight at NeurIPS 2021. The implementa

Martin Klissarov 7 Nov 09, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022