This is the code for our paper DAAIN: Detection of Anomalous and AdversarialInput using Normalizing Flows

Overview

Merantix-Labs: DAAIN

This is the code for our paper DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows which can be found at arxiv.

Assumptions

There are assumptions:

  • The training data PerturbedDataset makes some assumptions about the data:
    • the ignore_index is 255
    • num_classes = 19
    • the images are resized with size == 512

Module Overview

A selection of the files with some pointers what to find where

├── configs                                   # The yaml configs
│   ├── activation_spaces
│   │   └── esp_net_256_512.yaml
│   ├── backbone
│   │   ├── esp_dropout.yaml
│   │   └── esp_net.yaml
│   ├── dataset_paths
│   │   ├── bdd100k.yaml
│   │   └── cityscapes.yaml
│   ├── data_creation.yaml                    # Used to create the training and testing data in one go
│   ├── detection_inference.yaml              # Used for inference
│   ├── detection_training.yaml               # Used for training
│   ├── esp_dropout_training.yaml             # Used to train the MC dropout baseline
│   └── paths.yaml
├── README.md                                 # This file!
├── requirements.in                           # The requirements
├── setup.py
└── src
   └── daain
       ├── backbones                          # Definitions of the backbones, currently only a slighlty modified version
       │   │                                  # of the ESPNet was tested
       │   ├── esp_dropout_net
       │   │   ├── esp_dropout_net.py
       │   │   ├── __init__.py
       │   │   ├── lightning_module.py
       │   │   └── trainer
       │   │       ├── criteria.py
       │   │       ├── data.py
       │   │       ├── dataset_collate.py
       │   │       ├── data_statistics.py
       │   │       ├── __init__.py
       │   │       ├── iou_eval.py
       │   │       ├── README.md
       │   │       ├── trainer.py            # launch this file to train the ESPDropoutNet
       │   │       ├── transformations.py
       │   │       └── visualize_graph.py
       │   └── esp_net
       │       ├── espnet.py                 # Definition of the CustomESPNet
       │       └── layers.py
       ├── baseline
       │   ├── maximum_softmax_probability.py
       │   ├── max_logit.py
       │   └── monte_carlo_dropout.py
       ├── config_schema
       ├── constants.py                      # Some constants, the last thing to refactor...
       ├── data                              # General data classes
       │   ├── datasets
       │   │   ├── bdd100k_dataset.py
       │   │   ├── cityscapes_dataset.py
       │   │   ├── labels
       │   │   │   ├── bdd100k.py
       │   │   │   ├── cityscape.py
       │   │   └── semantic_segmentation_dataset.py
       │   ├── activations_dataset.py        # This class loads the recorded activations
       │   └── perturbed_dataset.py          # This class loads the attacked images
       ├── model
       │   ├── aggregation_mode.py           # Not interesting for inference
       │   ├── classifiers.py                # All classifiers used are defined here
       │   ├── model.py                      # Probably the most important module. Check this for an example on how
       │   │                                 # to used the detection model and how to load the parts
       │   │                                 # (normalising_flow & classifier)
       │   └── normalising_flow
       │       ├── coupling_blocks
       │       │   ├── attention_blocks
       │       │   ├── causal_coupling_bock.py  # WIP
       │       │   └── subnet_constructors.py
       │       └── lightning_module.py
       ├── scripts
       │   └── data_creation.py              # Use this file to create the training and testing data
       ├── trainer                           # Trainer of the full detection model
       │   ├── data.py                       # Loading the data...
       │   └── trainer.py
       ├── utils                             # General utils
       └── visualisations                    # Visualisation helpers

Parts

In general the model consists of two parts:

  • Normalising FLow
  • Classifier / Scoring method

Both have to be trained separately, depending on the classifier. Some are parameter free (except for the threshold).

The general idea can be summarised:

  1. Record the activations of the backbone model at specific locations during a forward pass.
  2. Transform the recorded activations using a normalising flow and map them to a standard Gaussian for each variable.
  3. Apply some simple (mostly distance based) classifier on the transformed activations to get the anomaly score.

Training & Inference Process

  1. Generate perturbed and adversarial images. We do not provide code for this step.
  2. Generate the activations using src/daain/scripts/data_creation.py
  3. Train the detection model using src/daain/trainer/trainer.py
  4. Use src/daain/model/model.py to load the trained model and use it to get the anomaly score (the probability that the input was anomalous).
Owner
Merantix
Merantix
PAGE XML format collection for document image page content and more

PAGE-XML PAGE XML format collection for document image page content and more For an introduction, please see the following publication: http://www.pri

PRImA Research Lab 46 Nov 14, 2022
Web interface for browsing arXiv papers

Currently, arxivbox considers only major computer vision and machine learning conferences

Ankan Kumar Bhunia 12 Sep 11, 2022
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).

OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents

Zuming Huang 363 Jan 03, 2023
This is the implementation of the paper "Gated Recurrent Convolution Neural Network for OCR"

Gated Recurrent Convolution Neural Network for OCR This project is an implementation of the GRCNN for OCR. For details, please refer to the paper: htt

90 Dec 22, 2022
Unofficial implementation of "TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from Scanned Document Images"

TableNet Unofficial implementation of ICDAR 2019 paper : TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from

Jainam Shah 243 Dec 30, 2022
A pure pytorch implemented ocr project including text detection and recognition

ocr.pytorch A pure pytorch implemented ocr project. Text detection is based CTPN and text recognition is based CRNN. More detection and recognition me

coura 444 Dec 30, 2022
A curated list of papers and resources for scene text detection and recognition

Awesome Scene Text A curated list of papers and resources for scene text detection and recognition The year when a paper was first published, includin

Jan Zdenek 43 Mar 15, 2022
Motion detector, Full body detection, Upper body detection, Cat face detection, Smile detection, Face detection (haar cascade), Silverware detection, Face detection (lbp), and Sending email notifications

Security camera running OpenCV for object and motion detection. The camera will send email with image of any objects it detects. It also runs a server that provides web interface with live stream vid

Peace 10 Jun 30, 2021
Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Vedaldi, Andrew Zisserman, CVPR 2016.

SynthText Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Ved

Ankush Gupta 1.8k Dec 28, 2022
Source code of RRPN ---- Arbitrary-Oriented Scene Text Detection via Rotation Proposals

Paper source Arbitrary-Oriented Scene Text Detection via Rotation Proposals https://arxiv.org/abs/1703.01086 News We update RRPN in pytorch 1.0! View

428 Nov 22, 2022

Installations for running keras-theano on GPU Upgrade pip and install opencv2 cd ~ pip install --upgrade pip pip install opencv-python Upgrade keras

Berat Kurar Barakat 14 Sep 30, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-Collector Web demo: https://ai-paper-collector.vercel.app/ (recommended) Colab notebook: here Motivation Fully-automated scripts for collecti

772 Dec 30, 2022
Neural search engine for AI papers

Papers search Neural search engine for ML papers. Demo Usage is simple: input an abstract, get the matching papers. The following demo also showcases

Giancarlo Fissore 44 Dec 24, 2022
An unofficial package help developers to implement ZATCA (Fatoora) QR code easily which required for e-invoicing

ZATCA (Fatoora) QR-Code Implementation An unofficial package help developers to implement ZATCA (Fatoora) QR code easily which required for e-invoicin

TheAwiteb 28 Nov 03, 2022
A post-processing tool for scanned sheets of paper.

unpaper Originally written by Jens Gulden — see AUTHORS for more information. Licensed under GNU GPL v2 — see COPYING for more information. Overview u

27 Dec 07, 2022
text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network

text-detection-ctpn Scene text detection based on ctpn (connectionist text proposal network). It is implemented in tensorflow. The origin paper can be

Shaohui Ruan 3.3k Dec 30, 2022
Regions sanitàries (RS), Sectors Sanitàris (SS) i Àrees Bàsiques de Salut (ABS) de Catalunya

Regions sanitàries (RS), Sectors Sanitaris (SS), Àrees de Gestió Assistencial (AGA) i Àrees Bàsiques de Salut (ABS) de Catalunya Fitxers GeoJSON de le

Glòria Macià Muñoz 2 Jan 23, 2022
OCR software for recognition of handwritten text

Handwriting OCR The project tries to create software for recognition of a handwritten text from photos (also for Czech language). It uses computer vis

Břetislav Hájek 562 Jan 03, 2023
An application of high resolution GANs to dewarp images of perturbed documents

Docuwarp This project is focused on dewarping document images through the usage of pix2pixHD, a GAN that is useful for general image to image translat

Thomas Huang 97 Dec 25, 2022
CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering" official PyTorch implementation.

LED2-Net This is PyTorch implementation of our CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering". Y

Fu-En Wang 83 Jan 04, 2023