Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Overview

Sonnet finder

Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Usage

This is a Python script that should run without a GPU or any other special hardware requirements.

  1. Install the required packages, e.g. via: pip install -r requirements.txt

  2. Prepare a plain text file, say input.txt, with text you want to make a sonnet out of (sonnet-ize? sonnet-ify?). It can have multiple sentences on the same line, but a sentence should not be split across multiple lines.

    For example, I used pandoc --to=plain --wrap=none to generate a text file from my LaTeX papers. You could also start by grabbing some text files from Project Gutenberg.

  3. Run sonnet finder: python sonnet_finder.py input.txt -o output.tsv

    Using -o will save a list of all extracted candidate phrases, sorted by rhyme pattern, so you can generate new sonnets more quickly (see below) or browse and cherry-pick from the candidates to make your own sonnet out of these lines.

    Either way, the script will output a full example sonnet to STDOUT (provided enough rhyming pairs in iambic pentameter were found).

  4. If you've saved an output.tsv file before, you can quickly generate new sonnets via python sonnet_remix.py output.tsv. Since the stress and pronunciation prediction can be slow on larger files, this is much better than re-running sonnet_finder.py if you want more automatically generated suggestions.

Examples

This is a sonnet (with cherry-picked lines) made out of my PhD thesis:

the application of existing tools
describe a mapping to a modern form
applying similar replacement rules
the base ensembles slightly outperform

hungarian, icelandic, portuguese
perform a similar evaluation
contemporary lexemes or morphemes
a single dataset in isolation

historical and modern language stages
the weighted combination of encoder
the german dative ending -e in phrases
predictions fed into the next decoder

in this example from the innsbruck letter
machine translation still remains the better

These stanzas are compiled from a couple of automatically-generated suggestions based on the abstracts of all papers published in 2021 in the ACL Anthology:

effective algorithm that enables
improvements on a wide variety
and training with adjudicated labels
anxiety and test anxiety

obtain remarkable improvements on
decoder architecture, which equips
associated with the lexicon
surprising personal relationships

the impact of the anaphoric one
complexity prediction competition
developed for a laboratory run
existing parsers typically condition

examples, while in practice, most unseen
evaluate translation tasks between

Here's the same using Moby Dick:

among the marble senate of the dead
offensive matters consequent upon
a crawling reptile of the land, instead
fifteen, eighteen, and twenty hours on

the lakeman now patrolled the barricade
egyptian tablets, whose antiquity
the waters seemed a golden finger laid
maintains a permanent obliquity

the pequod with the little negro pippin
and with a frightful roll and vomit, he
increased, besides perhaps improving it in
transparent air into the summer sea

the traces of a simple honest heart
the fishery, and not the thousandth part

(The emjambment in the third stanza here is a lucky coincidence; the script currently doesn't do any kind of syntactic analysis or attempt coherence between lines.)

How it works

This script relies on the grapheme-to-phoneme library g2p_en by Park & Kim to convert the English input text to phoneme sequences (i.e., how the text would be pronounced). I chose this because it's a pip-installable Python library that fulfills two important criteria:

  1. it's not restricted to looking up pronunciations in a dictionary, but can handle arbitrary words through the use of a neural model (although, obviously, this will not always be accurate);

  2. it provides stress information for each vowel (i.e., whether any given vowel should be stressed or unstressed, which is important for determining the poetic meter).

The script then scans the g2p output for occurrences of iambic pentameter, i.e. a 0101010101(0) pattern, additionally checking if they coincide with word boundaries.

For finding snippets that rhyme, I rely mostly on Ghazvininejad et al. (2016), particularly §3 (relaxing the iambic pentameter a bit by allowing words that end in 100) and §5.2 (giving an operational definition of "slant rhyme" that I mostly try to follow).

QNA (Questions Nobody Asked)

  • Why does the script sometimes output lines that don't rhyme or don't fit the iambic meter? This script can only be as good as the grapheme-to-phoneme algorithm that's used. It frequently fails on words it doesn't know (for example, it tries to rhyme datasets with Portuguese?!) and also usually fails on abbreviations. Maybe there's a better g2p library that could be used, or the existing g2p_en could be modified to accept a custom dictionary, so you could manually define pronunciations for commonly used words.

  • Could this script also generate other types of poems? Sure. You could start by changing the regex iambic_pentameter to something else; maybe a sequence of dactyls? There are some further hardcoded assumptions in the code about iambic pentameter in the function get_stress_and_boundaries() that might have to be modified.

  • Could this script generate poems in languages other than English? This would require a suitable replacement for g2p_en that predicts pronunciations and stress patterns for the desired language, as well as re-writing the code that determines whether two phrases can rhyme; see the comments in the script for details. In particular, the code for English uses ARPABET notation for the pronunciation, which won't be suitable for other languages.

  • Can this script generate completely novel phrases in the style of an input text? This script does not "hallucinate" any text or generate anything that wasn't already there in the input; if you want to do that, take a look at Deep-speare maybe.

etc.

Written by Marcel Bollmann, inspired by a tweet, licensed under the MIT License.

I'm not the first one to write a script like this, but it was a fun exercise!

Owner
Marcel Bollmann
Computational linguist, postdoc, programming enthusiast.
Marcel Bollmann
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vecto

3.2k Dec 30, 2022
This project converts your human voice input to its text transcript and to an automated voice too.

Human Voice to Automated Voice & Text Introduction: In this project, whenever you'll speak, it will turn your voice into a robot voice and furthermore

Hassan Shahzad 3 Oct 15, 2021
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022
HAN2HAN : Hangul Font Generation

HAN2HAN : Hangul Font Generation

Changwoo Lee 36 Dec 28, 2022
Refactored version of FastSpeech2

Refactored version of FastSpeech2. An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

ILJI CHOI 10 May 26, 2022
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022
👑 spaCy building blocks and visualizers for Streamlit apps

spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-

Explosion 620 Dec 29, 2022
Paddle2.x version AI-Writer

Paddle2.x 版本AI-Writer 用魔改 GPT 生成网文。Tuned GPT for novel generation.

yujun 74 Jan 04, 2023
Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module.

Import Subtitles for Blender VSE Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module. Supported formats by py

4 Feb 27, 2022
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

What is MUSE? MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE). MUS

Dani El-Ayyass 47 Sep 05, 2022
Main repository for the chatbot Bobotinho.

Bobotinho Bot Main repository for the chatbot Bobotinho. ℹ️ Introduction Twitch chatbot with entertainment commands. ‎ 💻 Technologies Concurrent code

Bobotinho 14 Nov 29, 2022
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022
This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summarization for 1500+ Language Pairs".

CrossSum This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summ

BUET CSE NLP Group 29 Nov 19, 2022
SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

SHAS: Approaching optimal Segmentation for End-to-End Speech Translation In this repo you can find the code of the Supervised Hybrid Audio Segmentatio

Machine Translation @ UPC 21 Dec 20, 2022
Beyond Accuracy: Behavioral Testing of NLP models with CheckList

CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models

Marco Tulio Correia Ribeiro 1.8k Dec 28, 2022
Ray-based parallel data preprocessing for NLP and ML.

Wrangl Ray-based parallel data preprocessing for NLP and ML. pip install wrangl # for latest pip install git+https://github.com/vzhong/wrangl See exa

Victor Zhong 33 Dec 27, 2022
A benchmark for evaluation and comparison of various NLP tasks in Persian language.

Persian NLP Benchmark The repository aims to track existing natural language processing models and evaluate their performance on well-known datasets.

Mofid AI 68 Dec 19, 2022
State of the Art Natural Language Processing

Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide

John Snow Labs 3k Jan 05, 2023