Table recognition inside douments using neural networks

Overview

TableTrainNet

A simple project for training and testing table recognition in documents.

This project was developed to make a neural network which recognizes tables inside documents. I needed an "intelligent" ocr for work, which could automatically recognize tables to treat them separately.

General overview

The project uses the pre-trained neural network offered by Tensorflow. In addition, a config file was used, according to the choosen pre-trained model, to train with object detections tensorflow API

The datasets was taken from:

Required libraries

Before we go on make sure you have everything installed to be able to use the project:

  • Python 3
  • Tensorflow (tested on r1.8)
  • Its object-detection API (remember to install COCO API. If you are on Windows see at the bottom of the readme)
  • Pillow
  • opencv-python
  • pandas
  • pyprind (useful for process bars)

Project pipeline

The project is made up of different parts that acts together as a pipeline.

Take confidence with costants

I have prepared two "costants" files: dataset_costants.py and inference_constants.py. The first contains all those costants that are useful to use to create dataset, the second to make inference with the frozen graph. If you just want to run the project you should modify only those two files.

Transform the images from RGB to single-channel 8-bit grayscale jpeg images

Since colors are not useful for table detection, we can convert all the images in .jpeg 8-bit single channel images. This) transformation is still under testing. Use python dataset/img_to_jpeg.py after setting dataset_costants.py:

  • DPI_EXTRACTION: output quality of the images;
  • PATH_TO_IMAGES: path/to/datase/images;
  • IMAGES_EXTENSION: extension of the extracted images. The only one tested is .jpeg.

Prepare the dataset for Tensorflow

The dataset was take from ICDAR 2017 POD Competition . It comes with a xml notation file with formulas, images and tables per image. Tensorflow instead can build its own TFRecord from csv informations, so we need to convert the xml files into a csv one. Use python dataset/generate_database_csv.py to do this conversion after setting dataset_costants.py:

  • TRAIN_CSV_NAME: name for .csv train output file;
  • TEST_CSV_NAME: name for .csv test output file;
  • TRAIN_CSV_TO_PATH: folder path for TRAIN_CSV_NAME;
  • TEST_CSV_TO_PATH: folder path for TEST_CSV_NAME;
  • ANNOTATIONS_EXTENSION: extension of annotations. In our case is .xml;
  • TRAINING_PERCENTAGE: percentage of images for training
  • TEST_PERCENTAGE: percentage of images for testing
  • TABLE_DICT: dictionary for data labels. For this project there is no reason to change it;
  • MIN_WIDTH_BOX, MIN_HEIGHT_BOX: minimum dimension to consider a box valid; Some networks don't digest well little boxes, so I put this check.

Generate TF records file

csv files and images are ready: now we need to create our TF record file to feed Tensorflow. Use python generate_tf_records.py to create the train and test.record files that we will need later. No need to configure dataset_costants.py

Train the network

Inside trained_models there are some folders. In each one there are two files, a .config and a .txt one. The first contains a tensorflow configuration, that has to be personalized:

  • fine_tune_checkpoint: path to the frozen graph from pre-trained tensorflow models networks;
  • tf_record_input_reader: path to the train.record and test.record file we created before;
  • label_map_path: path to the labels of your dataset.

The latter contains the command to launch from tensorflow/models/research/object-detection and follows this pattern:

python model_main.py \
--pipeline_config_path=path/to/your_config_file.config \
--model_dir=here/we/save/our/model" \ 
--num_train_steps=num_of_iterations \
--alsologtostderr

Other options are inside tensorflow/models/research/object-detection/model_main.py

Prepare frozen graph

When the net has finished the training, you can export a frozen graph to make inference. Tensorflow offers the utility: from tensorflow/models/research/object-detection run:

python export_inference_graph.py \ 
--input_type=image_tensor \
--pipeline_config_path=path/to/automatically/created/pipeline.config \ 
--trained_checkpoint_prefix=path/to/last/model.ckpt-xxx \
--output_directory=path/to/output/dir

Test your graph!

Now that you have your graph you can try it out: Run inference_with_net.py and set inference_costants.py:

  • PATHS_TO_TEST_IMAGE: path list to all the test images;
  • BMP_IMAGE_TEST_TO_PATH: path to which save test output files;
  • PATHS_TO_LABELS: path to .pbtxt label file;
  • MAX_NUM_BOXES: max number of boxes to be considered;
  • MIN_SCORE: minimum score of boxes to be considered;

Then it will be generated a result image for every combination of:

  • PATHS_TO_CKPTS: list path to all frozen graph you want to test;

In addition it will print a "merged" version of the boxes, in which all the best vertically overlapping boxes are merged together to gain accuracy. TEST_SCORES is a list of numbers that tells the program which scores must be merged together.

The procedure is better described in inference_with_net.py.

For every execution a .log file will be produced.

Common issues while installing Tensorflow models

TypeError: can't pickle dict_values objects

This comment will probably solve your problem.

Windows build and python3 support for COCO API dataset

This clone will provide a working source for COCO API in Windows and Python3

Owner
Giovanni Cavallin
Giovanni Cavallin
A curated list of promising OCR resources

Call for contributor(paper summary,dataset generation,algorithm implementation and any other useful resources) awesome-ocr A curated list of promising

wanghaisheng 1.6k Jan 04, 2023
Vietnamese Language Detection and Recognition

Table of Content Introduction (Khôi viết) Dataset (đổi link thui thành 3k5 ảnh mình) Getting Started (An Viết) Requirements Usage Example Training & E

6 May 27, 2022
A pkg stiching around view images(4-6cameras) to generate bird's eye view.

AVP-BEV-OPEN Please check our new work AVP_SLAM_SIM A pkg stiching around view images(4-6cameras) to generate bird's eye view! View Demo · Report Bug

Xinliang Zhong 37 Dec 01, 2022
Code for the paper: Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution

Fusformer Code for the paper: "Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution" Plateform Python 3.8.5 + Pytor

Jin-Fan Hu (胡锦帆) 11 Dec 12, 2022
A fastai/PyTorch package for unpaired image-to-image translation.

Unpaired image-to-image translation A fastai/PyTorch package for unpaired image-to-image translation currently with CycleGAN implementation. This is a

Tanishq Abraham 120 Dec 02, 2022
Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels"

Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels" Please refer to htt

Ke Sun 1 Feb 14, 2022
A simple document layout analysis using Python-OpenCV

Run the application: python main.py *Note: For first time running the application, create a folder named "output". The application is a simple documen

Roinand Aguila 109 Dec 12, 2022
Fatigue Driving Detection Based on Dlib

Fatigue Driving Detection Based on Dlib

5 Dec 14, 2022
Python rubik's cube solver

This program makes a 3D representation of a rubiks cube and solves it step by step.

Pablo QB 4 May 29, 2022
A machine learning software for extracting information from scholarly documents

GROBID GROBID documentation Visit the GROBID documentation for more detailed information. Summary GROBID (or Grobid, but not GroBid nor GroBiD) means

Patrice Lopez 1.9k Jan 08, 2023
Ocular is a state-of-the-art historical OCR system.

Ocular Ocular is a state-of-the-art historical OCR system. Its primary features are: Unsupervised learning of unknown fonts: requires only document im

228 Dec 30, 2022
Generates a message from the infamous Jerma Impostor image

Generate your very own jerma sus imposter message. Modes: Default Mode: Only supports the characters " ", !, a, b, c, d, e, h, i, m, n, o, p, q, r, s,

Giorno420 1 Oct 27, 2022
Hiiii this is the Spanish for Linux and win 10 and in the near future the english version of PortScan my new tool on which you can see what ports are Open only with the IP adress.

PortScanner-by-IIT PortScanner es una herramienta programada en Python3. Como su nombre indica esta herramienta escanea los primeros 150 puertos de re

5 Sep 19, 2022
Deskewing images with slanted content

skew_correction De-skewing images with slanted content by finding the deviation using Canny Edge Detection. To Run: In python 3.6, from deskew import

13 Aug 27, 2022
huoyijie 1.2k Dec 29, 2022
CTPN + DenseNet + CTC based end-to-end Chinese OCR implemented using tensorflow and keras

简介 基于Tensorflow和Keras实现端到端的不定长中文字符检测和识别 文本检测:CTPN 文本识别:DenseNet + CTC 环境部署 sh setup.sh 注:CPU环境执行前需注释掉for gpu部分,并解开for cpu部分的注释 Demo 将测试图片放入test_images

Yang Chenguang 2.6k Dec 29, 2022
DouZero is a reinforcement learning framework for DouDizhu - 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

Kwai 3.1k Jan 05, 2023
Document blur detection based on Laplacian operator and text detection.

Document Blur Detection For general blurred image, using the variance of Laplacian operator is a good solution. But as for the blur detection of docum

JoeyLr 5 Oct 20, 2022
Tensorflow-based CNN+LSTM trained with CTC-loss for OCR

Overview This collection demonstrates how to construct and train a deep, bidirectional stacked LSTM using CNN features as input with CTC loss to perfo

Jerod Weinman 489 Dec 21, 2022
Simple SDF mesh generation in Python

Generate 3D meshes based on SDFs (signed distance functions) with a dirt simple Python API.

Michael Fogleman 1.1k Jan 08, 2023