Crab - A Python Library for Recommendation Engines This library intends to be a reference for recommendation engines in Python Programming language. It is written in pure python to maximize the cross-platform issue and exposes the recommendation logic to your application by easy to use API REST via web services. The library is extensible, so the user can create new representations, algorithms and the design is optimized for performance. It is also open-source so everyone can use it. If you want to see our plan release/roadmap, please take a look at our Issues Tracker: http://github.com/marcelcaraciolo/crab/issues
This library intends to be a reference for recommendation engines in Python
Overview
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk
Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer
E-Commerce recommender demo with real-time data and a graph database
🔍 E-Commerce recommender demo 🔍 This is a simple stream setup that uses Memgraph to ingest real-time data from a simulated online store. Data is str
fastFM: A Library for Factorization Machines
Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat
Graph Neural Network based Social Recommendation Model. SIGIR2019.
Basic Information: This code is released for the papers: Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang and Meng Wang. A Neural Influence Dif
Code for my ORSUM, ACM RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation
HeroGRAPH Code for my ORSUM @ RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation Paper, workshop pro
Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems
DANSER-WWW-19 This repository holds the codes for Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recom
Codes for AAAI'21 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'
DHCN Codes for AAAI 2021 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'. Please note that the default link
Pytorch domain library for recommendation systems
TorchRec (Experimental Release) TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale
Spark-movie-lens - An on-line movie recommender using Spark, Python Flask, and the MovieLens dataset
A scalable on-line movie recommender using Spark and Flask This Apache Spark tutorial will guide you step-by-step into how to use the MovieLens datase
A library of Recommender Systems
A library of Recommender Systems This repository provides a summary of our research on Recommender Systems. It includes our code base on different rec
Bundle Graph Convolutional Network
Bundle Graph Convolutional Network This is our Pytorch implementation for the paper: Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin and Yong Li. Bun
Deep recommender models using PyTorch.
Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various poin
Plex-recommender - Get movie recommendations based on your current PleX library
plex-recommender Description: Get movie/tv recommendations based on your current
Books Recommendation With Python
Books-Recommendation Business Problem During the last few decades, with the rise
Code for MB-GMN, SIGIR 2021
MB-GMN Code for MB-GMN, SIGIR 2021 For Beibei data, run python .\labcode.py For Tmall data, run python .\labcode.py --data tmall --rank 2 For IJCAI
Attentive Social Recommendation: Towards User And Item Diversities
ASR This is a Tensorflow implementation of the paper: Attentive Social Recommendation: Towards User And Item Diversities Preprint, https://arxiv.org/a
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021
Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &
A recommendation system for suggesting new books given similar books.
Book Recommendation System A recommendation system for suggesting new books given similar books. Datasets Dataset Kaggle Dataset Notebooks goodreads-E
Spotify API Recommnder System
This project will access your last listened songs on Spotify using its API, then it will request the user to select 5 favorite songs in that list, on which the API will proceed to make 50 recommendat
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.
NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in