songplays datamart provide details about the musical taste of our customers and can help us to improve our recomendation system

Overview

Sparkify

Songplays User activity datamart

Status GitHub Issues GitHub Pull Requests License


The following document describes the model used to build the songplays datamart table and the respective ETL process.

Table of Contents

About

The songplays datamart provide details about the musical taste of our customers and can help us to improve our recomendation system.

This document describes the model of songplays table datamart on sparkify_app schema inside a container sparkify_postgres, and the Python code to load new data. The production directory and data must be simmilar to those in mnt/data/log_data and mnt/data/song_data paths in this repository.

🏁 Getting Started

First you need to have the right permissions to access the source files and write them into sparkify_app tables that generates the songplays datamart table. Contact the owners or your team leader for more information.

Data Model and Schema


songplays datamart

Source files and owners

File or table Description Directory Owner
YYYY-MM-DD-events.json User events. mnt/data/log_data/YYYY/11 Person 1
.json Song data. mnt/data/song_data/a Person 2
songplays Datamart for recomendation system. sparkify_app.songplays Person 3
artists Dimension table for artists. sparkify_app.artists Person 1
songs Dimension table for songs. sparkify_app.songs Person 1
time Dimension table for streaming start time for a given song. sparkify_app.time Person 2
users Dimension table for users. sparkify_app.users Person 3

Prerequisites


To run this project first you need to install the Docker Engine for your operational system and Docker Compose.

After installing and configuring the Docker tools, download this repository and create a folder named postgres that will store all sparkify_postgres service data. To build the proper images and run the services, just execute the following command inside this repository:

docker-compose up

If the service runs successfully you should see something like this:

...
sparkify_python      | 28/30 files processed.
sparkify_python      | 29/30 files processed.
sparkify_python      | 30/30 files processed.
sparkify_python exited with code 0

You can also check the job by following these steps:

  • Open your browser and access localhost:16543: pga1

    • Enter with the following credentials to authenticate:
  • After you log in, click on the Servers option at the upper corner on the left: pga2

    • You will be asked to enter with the PostgreSQL credentials:
      • User: sparkifypsql
      • Password: p4ssw0rd
  • Select the Query Tools under the Tools menu: pga3

  • Under the Query Editor, run the following query:

    SELECT * FROM sparkify_app.songplays WHERE song_id is NOT NULL and artist_id is NOT NULL;
    • You should get only 5 rows. pga3

Microservice architecture

The following image represents the microservice architecture for this project: topology

Where:

  • sparkify_python: runs all Python scripts and stores raw data.
  • sparkify_postgres: runs Postgre and stores the database.
  • sparkify_pgadmin: runs the pgAdmin tool to monitor the sparkify_postgres service.

⛏️ Built Using

✍️ Authors

Owner
Leandro Kellermann de Oliveira
Leandro Kellermann de Oliveira
BErt-like Neurophysiological Data Representation

BENDR BErt-like Neurophysiological Data Representation This repository contains the source code for reproducing, or extending the BERT-like self-super

114 Dec 23, 2022
Flexible HDF5 saving/loading and other data science tools from the University of Chicago

deepdish Flexible HDF5 saving/loading and other data science tools from the University of Chicago. This repository also host a Deep Learning blog: htt

UChicago - Department of Computer Science 255 Dec 10, 2022
Data Analytics on Genomes and Genetics

Data Analytics performed on On genomes and Genetics dataset to predict genetic disorder and disorder subclass. DONE by TEAM SIGMA!

1 Jan 12, 2022
Time ranges with python

timeranges Time ranges. Read the Docs Installation pip timeranges is available on pip: pip install timeranges GitHub You can also install the latest v

Micael Jarniac 2 Sep 01, 2022
Python tools for querying and manipulating BIDS datasets.

PyBIDS is a Python library to centralize interactions with datasets conforming BIDS (Brain Imaging Data Structure) format.

Brain Imaging Data Structure 180 Dec 18, 2022
Methylation/modified base calling separated from basecalling.

Remora Methylation/modified base calling separated from basecalling. Remora primarily provides an API to call modified bases for basecaller programs s

Oxford Nanopore Technologies 72 Jan 05, 2023
NumPy aware dynamic Python compiler using LLVM

Numba A Just-In-Time Compiler for Numerical Functions in Python Numba is an open source, NumPy-aware optimizing compiler for Python sponsored by Anaco

Numba 8.2k Jan 07, 2023
Lale is a Python library for semi-automated data science.

Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-

International Business Machines 293 Dec 29, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
Finding project directories in Python (data science) projects, just like there R rprojroot and here packages

Find relative paths from a project root directory Finding project directories in Python (data science) projects, just like there R here and rprojroot

Daniel Chen 102 Nov 16, 2022
Efficient matrix representations for working with tabular data

Efficient matrix representations for working with tabular data

QuantCo 70 Dec 14, 2022
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Glotzer Group 44 Oct 14, 2022
A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

TennisBusinessIntelligenceProject - A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

carlo paladino 1 Jan 02, 2022
Vaex library for Big Data Analytics of an Airline dataset

Vaex-Big-Data-Analytics-for-Airline-data A Python notebook (ipynb) created in Jupyter Notebook, which utilizes the Vaex library for Big Data Analytics

Nikolas Petrou 1 Feb 13, 2022
Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Aryan Raj 7 Sep 04, 2022
Analyzing Earth Observation (EO) data is complex and solutions often require custom tailored algorithms.

eo-grow Earth observation framework for scaled-up processing in Python. Analyzing Earth Observation (EO) data is complex and solutions often require c

Sentinel Hub 18 Dec 23, 2022
Shot notebooks resuming the main functions of GeoPandas

Shot notebooks resuming the main functions of GeoPandas, 2 notebooks written as Exercises to apply these functions.

1 Jan 12, 2022
Implementation in Python of the reliability measures such as Omega.

OmegaPy Summary Simple implementation in Python of the reliability measures: Omega Total, Omega Hierarchical and Omega Hierarchical Total. Name Link O

Rafael Valero Fernández 2 Apr 27, 2022
Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles

Correlation-Study-Climate-Change-EV-Adoption Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles I

Jonathan Feng 1 Jan 03, 2022
Developed for analyzing the covariance for OrcVIO

about This repo is developed for analyzing the covariance for OrcVIO environment setup platform ubuntu 18.04 using conda conda env create --file envir

Sean 1 Dec 08, 2021