Unofficial PyTorch implementation of Guided Dropout

Overview

Unofficial PyTorch implementation of Guided Dropout

This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm according to the paper published in AAA-19, but we can't guarantee the performance reported in the paper. We will list some experiment results soon.

TODO

  • Release the reproduced code
  • list experiment results
  • ...

Setup

pip install -r requirements.txt

Run

  1. Run Guided Dropout on CIFAR10 Dataset (mlp 3 hidden layers with 1024 nodes)
python mainpro.py --dataset CIFAR10 --arc mlp --mlp-depth 3 --hidden-dim 1024 -e 200 --lr 0.01 --exp-name mlp-1024-3-guided-dropout-cifar10
  1. Run Original Dropout on Fashionmnist Dataset (mlp 3 hidden layers with 8192 nodes)
python mainpro.py --dataset Fashionmnist --arc mlp --mlp-depth 3 --hidden-dim 8192 -e 200 --lr 0.01 --exp-name mlp-8192-3-original-dropout-cifar10 --drop-type Dropout --drop-rate 0.2
  1. Run Guided Dropout on CIFAR100 Dataset (ResNet-18)
python mainpro.py --dataset CIFAR100 --arc ResNet18 -e 200 --lr 0.01 --exp-name resnet18-guided-dropout-cifar100 --drop-type GuidedDropout --drop-rate 0.2

Result

CIFAR10

Algorithm MLP-1024-3 MLP-2048-3 MLP-4096-3 MLP-8192-3 ResNet18
Non Dropout - - - - -
Original Dropout - - - - -
Guided Dropout (top-k) * 58.75 59.65 59.64 59.92 94.02
Guided Dropout (DR) * 59.84 60.12 60.89 61.32 94.12
Guided Dropout - - - - -
Guided Dropout - - - - -

* means the result listed in the paper

CIFAR100

Algorithm MLP-1024-3 MLP-2048-3 MLP-4096-3 MLP-8192-3 ResNet18
Non Dropout - - - - -
Original Dropout - - - - -
Guided Dropout (top-k) * 30.92 31.59 31.34 32.11 76.98
Guided Dropout (DR) * 31.88 32.78 33.01 33.15 77.52
Guided Dropout - - - - -
Guided Dropout - - - - -
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 04, 2023
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

Yao Feng 2.3k Dec 30, 2022
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
Open-source code for Generic Grouping Network (GGN, CVPR 2022)

Open-World Instance Segmentation: Exploiting Pseudo Ground Truth From Learned Pairwise Affinity Pytorch implementation for "Open-World Instance Segmen

Meta Research 99 Dec 06, 2022
pytorch bert intent classification and slot filling

pytorch_bert_intent_classification_and_slot_filling 基于pytorch的中文意图识别和槽位填充 说明 基本思路就是:分类+序列标注(命名实体识别)同时训练。 使用的预训练模型:hugging face上的chinese-bert-wwm-ext 依

西西嘛呦 33 Dec 15, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021