Isaac Gym Environments for Legged Robots

Related tags

Hardwarelegged_gym
Overview

Isaac Gym Environments for Legged Robots

This repository provides the environment used to train ANYmal (and other robots) to walk on rough terrain using NVIDIA's Isaac Gym. It includes all components needed for sim-to-real transfer: actuator network, friction & mass randomization, noisy observations and random pushes during training.
Maintainer: Nikita Rudin
Affiliation: Robotic Systems Lab, ETH Zurich
Contact: [email protected]

Useful Links

Project website: https://leggedrobotics.github.io/legged_gym/ Paper: https://arxiv.org/abs/2109.11978

Installation

  1. Create a new python virtual env with python 3.6, 3.7 or 3.8 (3.8 recommended)
  2. Install pytorch 1.10 with cuda-11.3:
    • pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
  3. Install Isaac Gym
    • Download and install Isaac Gym Preview 3 (Preview 2 will not work!) from https://developer.nvidia.com/isaac-gym
    • cd isaacgym_lib/python && pip install -e .
    • Try running an example python examples/1080_balls_of_solitude.py
    • For troubleshooting check docs isaacgym/docs/index.html)
  4. Install rsl_rl (PPO implementation)
  5. Install legged_gym
    • Clone this repository
    • cd legged_gym && git checkout develop && pip install -e .

CODE STRUCTURE

  1. Each environment is defined by an env file (legged_robot.py) and a config file (legged_robot_config.py). The config file contains two classes: one conatianing all the environment parameters (LeggedRobotCfg) and one for the training parameters (LeggedRobotCfgPPo).
  2. Both env and config classes use inheritance.
  3. Each non-zero reward scale specified in cfg will add a function with a corresponding name to the list of elements which will be summed to get the total reward.
  4. Tasks must be registered using task_registry.register(name, EnvClass, EnvConfig, TrainConfig). This is done in envs/__init__.py, but can also be done from outside of this repository.

Usage

  1. Train:
    python issacgym_anymal/scripts/train.py --task=anymal_c_flat
    • To run on CPU add following arguments: --sim_device=cpu, --rl_device=cpu (sim on CPU and rl on GPU is possible).
    • To run headless (no rendering) add --headless.
    • Important: To improve performance, once the training starts press v to stop the rendering. You can then enable it later to check the progress.
    • The trained policy is saved in issacgym_anymal/logs/ / _ /model_ .pt . Where and are defined in the train config.
    • The following command line arguments override the values set in the config files:
    • --task TASK: Task name.
    • --resume: Resume training from a checkpoint
    • --experiment_name EXPERIMENT_NAME: Name of the experiment to run or load.
    • --run_name RUN_NAME: Name of the run.
    • --load_run LOAD_RUN: Name of the run to load when resume=True. If -1: will load the last run.
    • --checkpoint CHECKPOINT: Saved model checkpoint number. If -1: will load the last checkpoint.
    • --num_envs NUM_ENVS: Number of environments to create.
    • --seed SEED: Random seed.
    • --max_iterations MAX_ITERATIONS: Maximum number of training iterations.
  2. Play a trained policy:
    python issacgym_anymal/scripts/play.py --task=anymal_c_flat
    • By default the loaded policy is the last model of the last run of the experiment folder.
    • Other runs/model iteration can be selected by setting load_run and checkpoint in the train config.

Adding a new environment

The base environment legged_robot implements a rough terrain locomotion task. The corresponding cfg does not specify a robot asset (URDF/ MJCF) and no reward scales.

  1. Add a new folder to envs/ with ' _config.py , which inherit from an existing environment cfgs
  2. If adding a new robot:
    • Add the corresponding assets to resourses/.
    • In cfg set the asset path, define body names, default_joint_positions and PD gains. Specify the desired train_cfg and the name of the environment (python class).
    • In train_cfg set experiment_name and run_name
  3. (If needed) implement your environment in .py, inherit from an existing environment, overwrite the desired functions and/or add your reward functions.
  4. Register your env in isaacgym_anymal/envs/__init__.py.
  5. Modify/Tune other parameters in your cfg, cfg_train as needed. To remove a reward set its scale to zero. Do not modify parameters of other envs!

Troubleshooting

  1. If you get the following error: ImportError: libpython3.8m.so.1.0: cannot open shared object file: No such file or directory, do: sudo apt install libpython3.8

Known Issues

  1. The contact forces reported by net_contact_force_tensor are unreliable when simulating on GPU with a triangle mesh terrain. A workaround is to use force sensors, but the force are propagated through the sensors of consecutive bodies resulting in an undesireable behaviour. However, for a legged robot it is possible to add sensors to the feet/end effector only and get the expected results. When using the force sensors make sure to exclude gravity from trhe reported forces with sensor_options.enable_forward_dynamics_forces. Example:
    sensor_pose = gymapi.Transform()
    for name in feet_names:
        sensor_options = gymapi.ForceSensorProperties()
        sensor_options.enable_forward_dynamics_forces = False # for example gravity
        sensor_options.enable_constraint_solver_forces = True # for example contacts
        sensor_options.use_world_frame = True # report forces in world frame (easier to get vertical components)
        index = self.gym.find_asset_rigid_body_index(robot_asset, name)
        self.gym.create_asset_force_sensor(robot_asset, index, sensor_pose, sensor_options)
    (...)

    sensor_tensor = self.gym.acquire_force_sensor_tensor(self.sim)
    self.gym.refresh_force_sensor_tensor(self.sim)
    force_sensor_readings = gymtorch.wrap_tensor(sensor_tensor)
    self.sensor_forces = force_sensor_readings.view(self.num_envs, 4, 6)[..., :3]
    (...)

    self.gym.refresh_force_sensor_tensor(self.sim)
    contact = self.sensor_forces[:, :, 2] > 1.
Owner
Robotic Systems Lab - Legged Robotics at ETH Zürich
The Robotic Systems Lab investigates the development of machines and their intelligence to operate in rough and challenging environments.
Robotic Systems Lab - Legged Robotics at ETH Zürich
DOS-like OS for RP2040 basic microcontroller boards

Micropython DOS-like OS for RP2040 microcontroller boards. Check out the demo video at https://www.youtube.com/watch?v=Az_oiq8GE4Y To start the OS typ

RetiredWizard 58 Dec 27, 2022
This tool emulates an EMV-CAP device, to illustrate the article "Banque en ligne : à la decouverte d'EMV-CAP" published in MISC

About This tool emulates an EMV-CAP device, to illustrate the article "Banque en ligne : à la decouverte d'EMV-CAP" published in MISC, issue #56 and f

Philippe Teuwen 28 Nov 21, 2022
A simple program to make MSI Modern 15 speaker and microphone mute led work.

MSI Modern 15 sound led fixup for linux A simple program to fix the MSI Modern 15 speaker and microphone mute LEDs. Installation Requirements pulsectl

Seyed Danial Movahed 4 Oct 18, 2022
A python project based on a TV show Wheel of Fortune

Wheel-of-Fortune-using-Python Wheel of Fortune in python this game is the hands-on project in Python 3 Programming Specialization offered By Universit

Eszter Pai 1 Jan 03, 2022
A 3rd party Moonraker component to create timelapse of 3D prints.

A 3rd party Moonraker component to create timelapse of 3D prints.

Mainsail-Crew 166 Dec 26, 2022
Using a raspberry pi, we listen to the coffee machine and count the number of coffee consumption

A typical datarootsian consumes high-quality fresh coffee in their office environment. The board of dataroots had a very critical decision by the end of 2021-Q2 regarding coffee consumption.

dataroots 51 Nov 21, 2022
🌱 - WebhookHard◞ Fines Educativos ◟

v1.0.0 WebhookHardware ¿Que es WebhookHardware? WebhookHardware se trata de un proyecto tratado para sacar informacion sobre el hardware de tus victim

3 Jun 14, 2021
LT-OCF: Learnable-Time ODE-based Collaborative Filtering, CIKM'21

LT-OCF: Learnable-Time ODE-based Collaborative Filtering Our proposed LT-OCF Our proposed dual co-evolving ODE Setup Python environment for LT-OCF Ins

Jeongwhan Choi 15 Dec 28, 2022
Inykcal is a software written in python for selected E-Paper displays.

Inykcal is a software written in python for selected E-Paper displays. It converts these displays into useful information dashboards. It's open-source, free for personal use, fully modular and user-f

Ace 727 Jan 02, 2023
CircuitPython library for the CH559 USB to Serial chip

CH559 (USB to Serial) CircuitPython Library Why? Because you might want to get keyboard/mouse/gamepad/HID input into your CircuitPython projects witho

Guy Dupont 3 Nov 19, 2022
Pihole-eink-display - A simple Python script to display PiHole statistics on an eInk Display

Pihole-eink-display - A simple Python script to display PiHole statistics on an eInk Display

Mark McIntyre 64 Oct 11, 2022
A refreshed Python toolbox for building complex digital hardware

A refreshed Python toolbox for building complex digital hardware

nMigen 1k Jan 05, 2023
An arduino/ESP project that can play back G-Force data previously recorded

An arduino/ESP project that can play back G-Force data previously recorded

7 Apr 12, 2022
Rasberry Pie GPIO memory game. Press the corresponding key to the lit LED.

RPie-keyboard-game Rasberry Pie GPIO memory game. Press the corresponding key to the lit LED. Randem LED (general output) is lit up on rasberrypi rand

Shawn Dowling 1 Oct 24, 2021
Modi2-firmware-updater - MODI+ Firmware Updater With Python

MODI+ Firmware Updater 실행 준비 python3(파이썬3.9 혹은 그 이상의 버전)를 컴퓨터에 설치 python3 -m pip

LUXROBO 1 Feb 04, 2022
Python para microcontroladores com MicroPyhton

MicroPython - PyBR2021 Python para microcontroladores com MicroPyhton Repositório de exemplos para tutorial "Python para microcontroladores com MicroP

gabriel aragão 1 Oct 18, 2021
A PYTHON Library for Controlling Motors using SOLO Motor Controllers with RASPBERRY PI, Linux, windows, and more!

A PYTHON Library for Controlling Motors using SOLO Motor Controllers with RASPBERRY PI, Linux, windows, and more!

SOLO Motor Controllers 3 Apr 29, 2022
EuroPi: A reprogrammable Eurorack project based on the Raspberry Pi Pico

EuroPi The EuroPi is a fully user reprogrammable module based on the Raspberry Pi Pico, which allows users to process inputs and controls to produce o

Allen Synthesis 218 Jan 01, 2023
Brogrammer-keyboard - FIrmware for the Brogrammer Keyboard v1.0

Brogrammer Keyboard Firmware The package contains the firmware that runs on the Brogrammer Keyboard v1.0 See https://imgur.com/a/oY5QZ14 This keyboard

Devin Hartleben 1 Apr 21, 2022
Hardware: CTWingSKIT_BC28 Development Toolkit

IoT Portal Monitor Tools hardware: CTWingSKIT_BC28 Development Toolkit serial port driver: ST-LINK hardware development environment: Keli 5 MDK IoT pl

Fengming Zhang 1 Nov 07, 2021