Using a raspberry pi, we listen to the coffee machine and count the number of coffee consumption

Overview

maintained by dataroots

Fresh-Coffee-Listener

A typical datarootsian consumes high-quality fresh coffee in their office environment. The board of dataroots had a very critical decision by the end of 2021-Q2 regarding coffee consumption. From now on, the total number of coffee consumption stats have to be audited live via listening to the coffee grinder sound in Raspberry Pi, because why not?

Overall flow to collect coffee machine stats

  1. Relocate the Raspberry Pi microphone just next to the coffee machine
  2. Listen and record environment sound at every 0.7 seconds
  3. Compare the recorded environment sound with the original coffee grinder sound and measure the Euclidean distance
  4. If the distance is less than a threshold it means that the coffee machine has been started and a datarootsian is grabbing a coffee
  5. Connect to DB and send timestamp, office name, and serving type to the DB in case an event is detected ( E.g. 2021-08-04 18:03:57, Leuven, coffee )

Raspberry Pi Setup

  1. Hardware: Raspberry Pi 3b
  2. Microphone: External USB microphone (doesn't have to be a high-quality one). We also bought a microphone with an audio jack but apparently, the Raspberry Pi audio jack doesn't have an input. So, don't do the same mistake and just go for the USB one :)
  3. OS: Raspbian OS
  4. Python Version: Python 3.7.3. We used the default Python3 since we don't have any other python projects in the same Raspberry Pi. You may also create a virtual environment.

Detecting the Coffee Machine Sound

  1. In the sounds folder, there is a coffee-sound.m4a file, which is the recording of the coffee machine grinding sound for 1 sec. You need to replace this recording with your coffee machine recording. It is very important to note that record the coffee machine sound with the external microphone that you will use in Raspberry Pi to have a much better performance.
  2. When we run detect_sound.py, it first reads the coffee-sound.m4a file and extracts its MFCC features. By default, it extracts 20 MFCC features. Let's call these features original sound features
  3. The external microphone starts listening to the environment for about 0.7 seconds with a 44100 sample rate. Note that the 44100 sample rate is quite overkilling but Raspberry Pi doesn't support lower sample rates out of the box. To make it simple we prefer to use a 44100 sample rate.
  4. After each record, we also extract 20 MFCC features and compute the Euclidean Distance between the original sound features and recorded sound features.
  5. We append the Euclidean Distance to a python deque object having size 3.
  6. If the maximum distance in this deque is less than self.DIST_THRESHOLD = 85, then it means that there is a coffee machine usage attempt. Feel free to play with this threshold based on your requirements. You can simply comment out line 66 of detect_sound.py to print the deque object and try to select the best threshold. We prefer to check 3 events (i.e having deque size=3) subsequently to make it more resilient to similar sounds.
  7. Go back to step 3, if the elapsed time is < 12 hours. (Assuming that the code will run at 7 AM and ends at 7 PM since no one will be at the office after 7 PM)
  8. Exit

Scheduling the coffee listening job

We use a systemd service and timer to schedule the running of detect_sound.py. Please check coffee_machine_service.service and coffee_machine_service.timer files. This timer is enabled in the makefile. It means that even if you reboot your machine, the app will still work.

coffee_machine_service.service

In this file, you need to set the correct USER and WorkingDirectory. In our case, our settings are;

User=pi
WorkingDirectory= /home/pi/coffee-machine-monitoring

To make the app robust, we set Restart=on-failure. So, the service will restart if something goes wrong in the app. (E.g power outage, someone plugs out the microphone and plug in again, etc.). This service will trigger make run the command that we will cover in the following sections.

coffee_machine_service.timer

The purpose of this file is to schedule the starting time of the app. As you see in;

OnCalendar=Mon..Fri 07:00

It means that the app will work every weekday at 7 AM. Each run will take 7 hours. So, the app will complete listening at 7 PM.

Setup a PostgreSQL Database

You can set up a PostgreSQL database at any remote platform like an on-prem server, cloud, etc. It is not advised to install it to Raspberry Pi.

  1. Install and setup a PostgreSQL server by following the official documentation

  2. Create a database by typing the following command to the PostgreSQL console and replace DB_NAME with your database name;

    createdb DB_NAME
    

    If you got an error, check here

  3. Create a table by running the following query in your PostgreSQL console by replacing DB_NAME and TABLE_NAME with your own preference;

    CREATE TABLE DB_NAME.TABLE_NAME (
        "timestamp" timestamp(0) NOT NULL,
        office varchar NOT NULL,
        serving_type varchar NOT NULL
    );
    
  4. Create a user, password and give read/write access by replacing DB_USER, DB_PASSWORD, DB_NAME and DB_TABLE

    create user DB_USER with password 'DB_PASSWORD';
    grant select, insert, update on DB_NAME.DB_TABLE to DB_USER;
    

Deploying Fresh-Coffee-Listener app

  1. Installing dependencies: If you are using an ARM-based device like Raspberry-Pi run

    make install-arm

    For other devices having X84 architecture, you can simply run

    make install
  2. Set Variables in makefile

    • COFFEE_AUDIO_PATH: The absolute path of the original coffee machine sound (E.g. /home/pi/coffee-machine-monitoring/sounds/coffee-sound.m4a)
    • SD_DEFAULT_DEVICE: It is an integer value represents the sounddevice input device number. To find your external device number, run python3 -m sounddevice and you will see something like below;
         0 bcm2835 HDMI 1: - (hw:0,0), ALSA (0 in, 8 out)
         1 bcm2835 Headphones: - (hw:1,0), ALSA (0 in, 8 out)
         2 USB PnP Sound Device: Audio (hw:2,0), ALSA (1 in, 0 out)
         3 sysdefault, ALSA (0 in, 128 out)
         4 lavrate, ALSA (0 in, 128 out)
         5 samplerate, ALSA (0 in, 128 out)
         6 speexrate, ALSA (0 in, 128 out)
         7 pulse, ALSA (32 in, 32 out)
         8 upmix, ALSA (0 in, 8 out)
         9 vdownmix, ALSA (0 in, 6 out)
        10 dmix, ALSA (0 in, 2 out)
      * 11 default, ALSA (32 in, 32 out)

    It means that our default device is 2 since the name of the external device is USB PnP Sound Device. So, we will set it as SD_DEFAULT_DEVICE=2 in our case.

    • OFFICE_NAME: it's a string value like Leuven office
    • DB_USER: Your PostgreSQL database username
    • DB_PASSWORD: the password of the specified user
    • DB_HOST: The host of the database
    • DB_PORT: Port number of the database
    • DB_NAME: Name of the database
    • DB_TABLE: Name of the table
  3. Sanity check: Run make run to see if the app works as expected. You can also have a coffee to test whether it captures the coffee machine sound.

  4. Enabling systemd commands to schedule jobs: After configuring coffee_machine_service.service and coffee_machine_service.timer based on your preferences, as shown above, run to fully deploy the app;

    make run-systemctl
  5. Check the coffee_machine.logs file under the project root directory, if the app works as expected

  6. Check service and timer status with the following commands

    systemctl status coffee_machine_service.service

    and

    systemctl status coffee_machine_service.timer

Having Questions / Improvements ?

Feel free to create an issue and we will do our best to help your coffee machine as well :)

Owner
dataroots
Supporting your data driven strategy.
dataroots
Monitor an EnvisaLink alarm module running Honeywell firmware, and set a Nest device to Home/Away depending on whether the alarm is Disarmed/Away.

Nestalarm Monitor an EnvisaLink alarm module running Honeywell firmware, and set a Nest device to Home/Away depending on whether the alarm is Disarmed

1 Dec 30, 2021
Python Client for ESPHome native API. Used by Home Assistant.

aioesphomeapi aioesphomeapi allows you to interact with devices flashed with ESPHome. Installation The module is available from the Python Package Ind

ESPHome 76 Jan 04, 2023
Tools and documentation to aid in modifying the ADI ADALM Pluto firmware

Pluto firmware modifications This repository contains tools and documentation to aid in modifying the ADI ADALM Pluto firmware. Extraction of the Plut

Daniel Estévez 28 Dec 21, 2022
Python Keylogger for Linux

A keylogger is a program that records your keystrokes, this program saves them in a .txt file on your local computer and, after 30 seconds (or as long as you want), it will close the .txt file and se

Darío Mazzitelli 4 Jul 31, 2021
Quasi-static control of the centroid of quadruped robot

Quasi-static control of quadruped robot   This is a demo of the quasi-static controller for the centroid of the quadruped robot. The Quadratic Program

Junwen Cui 21 Dec 12, 2022
hardware design of the 250mm drone

hardware design of the 250mm drone

ZJU FAST Lab 645 Dec 25, 2022
ROS2 nodes for Waveshare Alphabot2-Pi mobile robot.

ROS2 for Waveshare Alphabot2-Pi This repo contains ROS2 packages for the Waveshare Alphabot2-Pi mobile robot: alphabot2: it contains the nodes used to

Michele Rizzo 2 Oct 11, 2022
A python script for macOS to enable scrolling with the 3M ergonomic mouse EM500GPS in any application.

A python script for macOS to enable scrolling with the 3M ergonomic mouse EM500GPS in any application.

3 Feb 19, 2022
Micropython automatic watering

micropython-automatic-watering micropython automatic watering his code was developed to be used with nodemcu esp8266, but can be modified to work with

1 Nov 24, 2021
ModbusTCP2MQTT - Sungrow & SMA Solar Inverter addon for Home Assistant

ModbusTCP2MQTT Sungrow & SMA Solar Inverter addon for Home Assistant This addon will connect directly to your Inverter using Modbus TCP. Support model

Teny Smart 40 Dec 21, 2022
Python apps to assist with Gas Blending

Welcome to DiveTools Gas Blending This tool is for testing and educational use. It is not intended to confirm the mix of breathing gases. If this tool

Tucker 7 Sep 18, 2022
HA-Edge-Connector - HA Edge Connector For Python

HA-Edge-Connector 1. Required a. Smartthings Hub & Homeassistant must be in same

chals 21 Dec 29, 2022
Pylorawan is a Micropython wrapper for lorawan devices from RAK Wireless.

pylorawan Pylorawan is a Micropython wrapper for lorawan devices from RAK Wireless. Tested on a Raspberry PI Pico with a RAK4200(H) Evaluation Board (

Peter Houghton 3 Nov 04, 2022
Home Assistant custom integration to fetch data from Powerpal

Powerpal custom component for Home Assistant Component to integrate with powerpal. This repository and integration is not affiliated with Powerpal. Th

Lawrence 32 Jan 07, 2023
DongshanPI Seven for STM32MP157DAC.

STM32MP1 Buildroot External Tree

DongshanPI 14 May 06, 2022
3d printable macropad

Pico Mpad A 3D printable macropad for automating frequently repeated actions. Hardware To build this project you need access to a 3d printer. The mode

Dmytro Panin 94 Jan 07, 2023
This repository hosts the code for Stanford Pupper and Stanford Woofer, Raspberry Pi-based quadruped robots that can trot, walk, and jump.

This repository hosts the code for Stanford Pupper and Stanford Woofer, Raspberry Pi-based quadruped robots that can trot, walk, and jump.

Stanford Student Robotics 1.2k Dec 25, 2022
What if home automation was homoiconic? Just transformations of data? No more YAML!

radiale what if home-automation was also homoiconic? The upper or proximal row contains three bones, to which Gegenbaur has applied the terms radiale,

Felix Barbalet 21 Mar 26, 2022
A script and GUI for controlling stepper motors from an arduino

A script and GUI for controlling stepper motors from an arduino (nema 23 in my case but should work for others in general)

Pip 2 Aug 01, 2022
USB Rubber Ducky with the Rasberry Pi pico microcontroller

pico-ducky Install Install and have your USB Rubber Ducky working in less than 5 minutes. Download CircuitPython for the Raspberry Pi Pico. Plug the d

AnOnYmOus001100 3 Oct 08, 2022