ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.

Overview

ForecastGA

A Python tool to forecast GA data using several popular time series models.

Open In Colab

Logo for ForecastGA

About

Welcome to ForecastGA

ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.

  • The models are made more intuitive to upgrade and add by having the tool logic separate from the model training and prediction.
  • When calling am.forecast_insample(), any kwargs included (e.g. learning_rate) are passed to the train method of the model.
  • Google Analytics profiles are specified by simply passing the URL (e.g. https://analytics.google.com/analytics/web/?authuser=2#/report-home/aXXXXXwXXXXXpXXXXXX).
  • You can provide a data dict with GA config options or a Pandas Series as the input data.
  • Multiple log levels.
  • Auto GPU detection (via Torch).
  • List all available models, with descriptions, by calling forecastga.print_model_info().
  • Google API info can be passed in the data dict or uploaded as a JSON file named identity.json.
  • Created a companion Google Colab notebook to easily run on GPU.
  • A handy plot function for Colab, forecastga.plot_colab(forecast_in, title="Insample Forecast", dark_mode=True) that formats nicely and also handles Dark Mode!

Models Available

  • ARIMA : Automated ARIMA Modelling
  • Prophet : Modeling Multiple Seasonality With Linear or Non-linear Growth
  • ProphetBC : Prophet Model with Box-Cox transform of the data
  • HWAAS : Exponential Smoothing With Additive Trend and Additive Seasonality
  • HWAMS : Exponential Smoothing with Additive Trend and Multiplicative Seasonality
  • NBEATS : Neural basis expansion analysis (now fixed at 20 Epochs)
  • Gluonts : RNN-based Model (now fixed at 20 Epochs)
  • TATS : Seasonal and Trend no Box Cox
  • TBAT : Trend and Box Cox
  • TBATS1 : Trend, Seasonal (one), and Box Cox
  • TBATP1 : TBATS1 but Seasonal Inference is Hardcoded by Periodicity
  • TBATS2 : TBATS1 With Two Seasonal Periods

How To Use

Find Model Info:

forecastga.print_model_info()

Initialize Model:

Google Analytics:
data = { 'client_id': '',
         'client_secret': '',
         'identity': '',
         'ga_start_date': '2018-01-01',
         'ga_end_date': '2019-12-31',
         'ga_metric': 'sessions',
         'ga_segment': 'organic traffic',
         'ga_url': 'https://analytics.google.com/analytics/web/?authuser=2#/report-home/aXXXXXwXXXXXpXXXXXX',
         'omit_values_over': 2000000
        }

model_list = ["TATS", "TBATS1", "TBATP1", "TBATS2", "ARIMA"]
am = forecastga.AutomatedModel(data , model_list=model_list, forecast_len=30 )
Pandas DataFrame:
# CSV with columns: Date and Sessions
df = pd.read_csv('ga_sessions.csv')
df.Date = pd.to_datetime(df.Date)
df = df.set_index("Date")
data = df.Sessions

model_list = ["TATS", "TBATS1", "TBATP1", "TBATS2", "ARIMA"]
am = forecastga.AutomatedModel(data , model_list=model_list, forecast_len=30 )

Forecast Insample:

forecast_in, performance = am.forecast_insample()

Forecast Outsample:

forecast_out = am.forecast_outsample()

Ensemble Performance:

all_ensemble_in, all_ensemble_out, all_performance = am.ensemble(forecast_in, forecast_out)

Pretty Plot in Google Colab

forecastga.plot_colab(forecast_in, title="Insample Forecast", dark_mode=True)

Installation

Windows users may need to manually install the two items below via conda :

  1. conda install pystan
  2. conda install pytorch -c pytorch
  3. !pip install --upgrade git+https://github.com/jroakes/ForecastGA.git

otherwise, pip install --upgrade forecastga

This repo support GPU training. Below are a few libraries that may have to be manually installed to support.

pip install --upgrade mxnet-cu101
pip install --upgrade torch 1.7.0+cu101

Acknowledgements

  1. Majority of forecasting code taken from https://github.com/firmai/atspy and refactored heavily.
  2. Google Analytics based off of: https://github.com/debrouwere/google-analytics
  3. Thanks to richardfergie for the addition of the Prophet Box-Cox model to control negative predictions.

Contribute

The goal of this repo is to grow the list of available models to test. If you would like to contribute one please read on. Feel free to have fun naming your models.

  1. Fork the repo.
  2. In the /src/forecastga/models folder there is a model called template.py. You can use this as a template for creating your new model. All available variables are there. Forecastga ensures each model has the right data and calls only the train and forecast methods for each model. Feel free to add additional methods that your model requires.
  3. Edit the /src/forecastga/models/__init__.py file to add your model's information. Follow the format of the other entries. Forecastga relies on loc to find the model and class to find the class to use.
  4. Edit requirments.txt with any additional libraries needed to run your model. Keep in mind that this repo should support GPU training if available and some libraries have separate GPU-enabled versions.
  5. Issue a pull request.

If you enjoyed this tool consider buying me some beer at: Paypalme

Owner
JR Oakes
Hacker, SEO, NC State fan, co-organizer of Raleigh and RTP Meetups, as well as @sengineland author. Tweets are my own.
JR Oakes
Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data.

Hatchet Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data. It is intended for analyzing

Lawrence Livermore National Laboratory 14 Aug 19, 2022
Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video.

Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video. You can chose the cha

2 Jul 22, 2022
NumPy aware dynamic Python compiler using LLVM

Numba A Just-In-Time Compiler for Numerical Functions in Python Numba is an open source, NumPy-aware optimizing compiler for Python sponsored by Anaco

Numba 8.2k Jan 07, 2023
Python utility to extract differences between two pandas dataframes.

Python utility to extract differences between two pandas dataframes.

Jaime Valero 8 Jan 07, 2023
Parses data out of your Google Takeout (History, Activity, Youtube, Locations, etc...)

google_takeout_parser parses both the Historical HTML and new JSON format for Google Takeouts caches individual takeout results behind cachew merge mu

Sean Breckenridge 27 Dec 28, 2022
Used for data processing in machine learning, and help us to construct ML model more easily from scratch

Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.

ShawnWang 0 Jul 05, 2022
Provide a market analysis (R)

market-study Provide a market analysis (R) - FRENCH Produisez une étude de marché Prérequis Pour effectuer ce projet, vous devrez maîtriser la manipul

1 Feb 13, 2022
Tools for analyzing data collected with a custom unity-based VR for insects.

unityvr Tools for analyzing data collected with a custom unity-based VR for insects. Organization: The unityvr package contains the following submodul

Hannah Haberkern 1 Dec 14, 2022
Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Cloudera 759 Jan 07, 2023
SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

SNV Pipeline SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

East Genomics 1 Nov 02, 2021
simple way to build the declarative and destributed data pipelines with python

unipipeline simple way to build the declarative and distributed data pipelines. Why you should use it Declarative strict config Scaffolding Fully type

aliaksandr-master 0 Jan 26, 2022
:truck: Agile Data Preparation Workflows made easy with dask, cudf, dask_cudf and pyspark

To launch a live notebook server to test optimus using binder or Colab, click on one of the following badges: Optimus is the missing framework to prof

Iron 1.3k Dec 30, 2022
Jupyter notebooks for the book "The Elements of Statistical Learning".

This repository contains Jupyter notebooks implementing the algorithms found in the book and summary of the textbook.

Madiyar 369 Dec 30, 2022
A notebook to analyze Amazon Recommendation Review Dataset.

Amazon Recommendation Review Dataset Analyzer A notebook to analyze Amazon Recommendation Review Dataset. Features Calculates distinct user count, dis

isleki 3 Aug 22, 2022
Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which he recommends to buy. We will use this data to build a portfolio

Backtesting the "Cramer Effect" & Recommendations from Cramer Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which

Gábor Vecsei 12 Aug 30, 2022
CubingB is a timer/analyzer for speedsolving Rubik's cubes, with smart cube support

CubingB is a timer/analyzer for speedsolving Rubik's cubes (and related puzzles). It focuses on supporting "smart cubes" (i.e. bluetooth cubes) for recording the exact moves of a solve in real time.

Zach Wegner 5 Sep 18, 2022
AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures.

AptaMAT Purpose AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures. The method is based on the compa

GEC UTC 3 Nov 03, 2022
A simplified prototype for an as-built tracking database with API

Asbuilt_Trax A simplified prototype for an as-built tracking database with API The purpose of this project is to: Model a database that tracks constru

Ryan Pemberton 1 Jan 31, 2022
Repositori untuk menyimpan material Long Course STMKGxHMGI tentang Geophysical Python for Seismic Data Analysis

Long Course "Geophysical Python for Seismic Data Analysis" Instruktur: Dr.rer.nat. Wiwit Suryanto, M.Si Dipersiapkan oleh: Anang Sahroni Waktu: Sesi 1

Anang Sahroni 0 Dec 04, 2021
Vectorizers for a range of different data types

Vectorizers for a range of different data types

Tutte Institute for Mathematics and Computing 69 Dec 29, 2022