Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Related tags

Text Data & NLPadp
Overview

Adversarial Purification with Score-based Generative Models

by Jongmin Yoon, Sung Ju Hwang, Juho Lee

This repository includes the official PyTorch implementation of our paper:

Adversarial Purification with Score-based Generative Models

Jongmin Yoon, Sung Ju Hwang, Juho Lee

the 38th International Conference for Machine Learning (ICML 2021)

ArXiv: https://arxiv.org/abs/2106.06041

What does our work do?

We propose a method that gives adversarial robustness to a neural network model against (stochastic) adversarial attacks by using an Energy-based Model (EBM) trained with Denoising Score Matching (DSM), which is called Adversarial denosing purification (ADP).

Running Codes

Dependency

Run the following command to install some necessary python packages to run our code.

pip install -r requirements.txt

Running code

To run the experiments with adp.py or adp_decision.py, enter the following command.

python main.py --config <config-file>

For example, we provide the example configuration file configs/cifar10_bpda_eot_sigma025_eot15.yml in the repository.

Attack and defense

For adversarial attacks, the classifier PGD attack and BPDA+EOT attack are implemented in attacks/clf_pgd.py and attacks/bpda_strong.py, respectively. At the configuration file, setting the attack.attack_method into clf_pgd or bpda_strong will run these attacks, respectively. For defense, we implemented the main ADP algorithm and ADP after detecting adversarial examples (Appendix F.) in purification/adp.py and purification/adp_decision.py, respectively.

Main components

File name Explanation
main.py Execute the main code, with initializing configurations and loggers.
runners/empirical.py Attacks and purifies the image to show empirical adversarial robustness.
attacks/bpda_strong.py Code for BPDA+EOT attack.
purification/adp.py Code for adversarial purification.
ncsnv2/* Code for training the EBM, i.e., NCSNv2 (paper, code).
networks/* Code for used classifier network architectures.
utils/* Utility files.

Notes

  • For the configuration files, we use the pixel ranges [0, 255] for the perturbation scale attack.ptb and the one-step attack scale attack.alpha. And the main experiments are performed within the pixel range [0, 1] after being rescaled during execution.
  • For training the EBM and classifier models, we primarily used the pre-existing methods such as NCSNv2 and WideResNet classifier. Here is the repository we used for training the WideResNet classifier. Nevertheless, other classifiers, such as the pre-trained adversarially robust classifier implemented in here can be used.

Reference

If you find our work useful for your research, please consider citing this.

@inproceedings{
yoon2021advpur,
title={Adversarial Purification with Score-based Generative Models},
author={Jongmin Yoon and Sung Ju Hwang and Juho Lee},
booktitle={Proceedings of The 38th International Conference on Machine Learning (ICML 2021)},
year={2021},
}

Contact

For further details, please contact [email protected].

License

MIT

A programming language with logic of Python, and syntax of all languages.

Pytov The idea was to take all well known syntaxes, and combine them into one programming language with many posabilities. Installation Install using

Yuval Rosen 14 Dec 07, 2022
COVID-19 Related NLP Papers

COVID-19 outbreak has become a global pandemic. NLP researchers are fighting the epidemic in their own way.

xcfeng 28 Oct 30, 2022
CredData is a set of files including credentials in open source projects

CredData is a set of files including credentials in open source projects. CredData includes suspicious lines with manual review results and more information such as credential types for each suspicio

Samsung 19 Sep 07, 2022
A workshop with several modules to help learn Feast, an open-source feature store

Workshop: Learning Feast This workshop aims to teach users about Feast, an open-source feature store. We explain concepts & best practices by example,

Feast 52 Jan 05, 2023
Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the CASL project: http://casl-project.ai/

Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides

ASYML 2.3k Jan 07, 2023
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an

Vibhor Agarwal 2 Jun 30, 2022
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
NAACL 2022: MCSE: Multimodal Contrastive Learning of Sentence Embeddings

MCSE: Multimodal Contrastive Learning of Sentence Embeddings This repository contains code and pre-trained models for our NAACL-2022 paper MCSE: Multi

Saarland University Spoken Language Systems Group 39 Nov 15, 2022
Creating a chess engine using GPT-3

GPT3Chess Creating a chess engine using GPT-3 Code for my article : https://towardsdatascience.com/gpt-3-play-chess-d123a96096a9 My game (white) vs GP

19 Dec 17, 2022
This is the Alpha of Nutte language, she is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda

nutte-language This is the Alpha of Nutte language, it is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda My language was

catdochrome 2 Dec 18, 2021
✔👉A Centralized WebApp to Ensure Road Safety by checking on with the activities of the driver and activating label generator using NLP.

AI-For-Road-Safety Challenge hosted by Omdena Hyderabad Chapter Original Repo Link : https://github.com/OmdenaAI/omdena-india-roadsafety Final Present

Prathima Kadari 7 Nov 29, 2022
customer care chatbot made with Rasa Open Source.

Customer Care Bot Customer care bot for ecomm company which can solve faq and chitchat with users, can contact directly to team. 🛠 Features Basic E-c

Dishant Gandhi 23 Oct 27, 2022
OpenAI CLIP text encoders for multiple languages!

Multilingual-CLIP OpenAI CLIP text encoders for any language Colab Notebook · Pre-trained Models · Report Bug Overview OpenAI recently released the pa

Fredrik Carlsson 481 Dec 30, 2022
Maha is a text processing library specially developed to deal with Arabic text.

An Arabic text processing library intended for use in NLP applications Maha is a text processing library specially developed to deal with Arabic text.

Mohammad Al-Fetyani 184 Nov 27, 2022
本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。

【关于 NLP】那些你不知道的事 作者:杨夕、芙蕖、李玲、陈海顺、twilight、LeoLRH、JimmyDU、艾春辉、张永泰、金金金 介绍 本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。 目录架构 一、【

1.4k Dec 30, 2022
ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in

241 Jan 04, 2023
Blender addon - Scrub timeline from viewport with a shortcut

Viewport scrub timeline Move in the timeline directly in viewport and snap to nearest keyframe Note : This standalone feature will be added in the nat

Samuel Bernou 40 Nov 07, 2022
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022