Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

Overview

LOREN

Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

front

DEMO System

Check out our demo system! Note that the results will be slightly different from the paper, since we use an up-to-date Wikipedia as the evidence source whereas FEVER uses Wikipedia dated 2017.

Dependencies

  • CUDA > 11
  • Prepare requirements: pip3 install -r requirements.txt.
    • Also works for allennlp==2.3.0, transformers==4.5.1, torch==1.8.1.
  • Set environment variable $PJ_HOME: export PJ_HOME=/YOUR_PATH/LOREN/.

Download Pre-processed Data and Checkpoints

  • Pre-processed data at Google Drive. Unzip it and put them under LOREN/data/.

    • Data for training a Seq2Seq MRC is at data/mrc_seq2seq_v5/.
    • Data for training veracity prediction is at data/fact_checking/v5/*.json.
      • Note: dev.json uses ground truth evidence for validation, where eval.json uses predicted evidence for validation. This is consistent with the settings in KGAT.
    • Evidence retrieval models are not required for training LOREN, since we directly adopt the retrieved evidence from KGAT, which is at data/fever/baked_data/ (using only during pre-processing).
    • Original data is at data/fever/ (using only during pre-processing).
  • Pre-trained checkpoints at Huggingface Models. Unzip it and put them under LOREN/models/.

    • Checkpoints for veracity prediciton are at models/fact_checking/.
    • Checkpoint for generative MRC is at models/mrc_seq2seq/.
    • Checkpoints for KGAT evidence retrieval models are at models/evidence_retrieval/ (not used in training, displayed only for the sake of completeness).

Training LOREN from Scratch

For quick training and inference with pre-processed data & pre-trained models, please go to Veracity Prediction.

First, go to LOREN/src/.

1 Building Local Premises from Scratch

1) Extract claim phrases and generate questions

You'll need to download three external models in this step, i.e., two models from AllenNLP in parsing_client/sentence_parser.py and a T5-based question generation model in qg_client/question_generator.py. Don't worry, they'll be automatically downloaded.

  • Run python3 pproc_client/pproc_questions.py --roles eval train val test
  • This generates cached json files:
    • AG_PREFIX/answer.{role}.cache: extracted phrases are stored in the field answers.
    • QG_PREFIX/question.{role}.cache: generated questions are stored in the field cloze_qs, generate_qs and questions (two types of questions concatenated).

2) Train Seq2Seq MRC

Prepare self-supervised MRC data (only for SUPPORTED claims)
  • Run python3 pproc_client/pproc_mrc.py -o LOREN/data/mrc_seq2seq_v5.
  • This generates files for Seq2Seq training in a HuggingFace style:
    • data/mrc_seq2seq_v5/{role}.source: concatenated question and evidence text.
    • data/mrc_seq2seq_v5/{role}.target: answer (claim phrase).
Training Seq2Seq
  • Go to mrc_client/seq2seq/, which is modified based on HuggingFace's examples.
  • Follow script/train.sh.
  • The best checkpoint will be saved in $output_dir (e.g., models/mrc_seq2seq/).
    • Best checkpoints are decided by ROUGE score on dev set.

3) Run MRC for all questions and assemble local premises

  • Run python3 pproc_client/pproc_evidential.py --roles val train eval test -m PATH_TO_MRC_MODEL/.
  • This generates files:
    • {role}.json: files for veracity prediction. Assembled local premises are stored in the field evidential_assembled.

4) Building NLI prior

Before training veracity prediction, we'll need a NLI prior from pre-trained NLI models, such as DeBERTa.

  • Run python3 pproc_client/pproc_nli_labels.py -i PATH_TO/{role}.json -m microsoft/deberta-large-mnli.
  • Mind the order! The predicted classes [Contradict, Neutral, Entailment] correspond to [REF, NEI, SUP], respectively.
  • This generates files:
    • Adding a new field nli_labels to {role}.json.

2 Veracity Prediction

This part is rather easy (less pipelined :P). A good place to start if you want to skip the above pre-processing.

1) Training

  • Go to folder check_client/.
  • See what scripts/train_*.sh does.

2) Testing

  • Stay in folder check_client/
  • Run python3 fact_checker.py --params PARAMS_IN_THE_CODE
  • This generates files:
    • results/*.predictions.jsonl

3) Evaluation

  • Go to folder eval_client/

  • For Label Accuracy and FEVER score: fever_scorer.py

  • For CulpA (turn on --verbose in testing): culpa.py

Citation

If you find our paper or resources useful to your research, please kindly cite our paper (pre-print, official published paper coming soon).

@misc{chen2021loren,
      title={LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification}, 
      author={Jiangjie Chen and Qiaoben Bao and Changzhi Sun and Xinbo Zhang and Jiaze Chen and Hao Zhou and Yanghua Xiao and Lei Li},
      year={2021},
      eprint={2012.13577},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
Jiangjie Chen
Ph.D. student.
Jiangjie Chen
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022