ZeroGen: Efficient Zero-shot Learning via Dataset Generation

Overview

ZEROGEN

This repository contains the code for our paper “ZeroGen: Efficient Zero-shot Learning via Dataset Generation”. Our implementation is built on the source code from dino. Thanks for their work.

If you use this code, please cite our paper:

@article{ye2022zerogen,
      title={ZeroGen: Efficient Zero-shot Learning via Dataset Generation}, 
      author={Jiacheng Ye and Jiahui Gao and Qintong Li and Hang Xu and Jiangtao Feng and Zhiyong Wu and Tao Yu and Lingpeng Kong},
      year={2022},
      eprint={2202.07922},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Setup

All requirements for ZEROGEN can be found in requirements.txt. You can install all required packages in a new environment with pip install -r requirements.txt.

Usage

The scripts/run_cls.sh and scripts/run_qa.sh scripts contain the running commands for the following settings:

  • supervised learning with human annotations (SUPERVISED)
  • prompt-based zero-shot learning (PROMPTING)
  • efficient zero-shot learning via dataset generation (ZEROGEN)

For text classification (TC) tasks (e.g., SST-2 and IMDb) and natural language inference (NLI) tasks (e.g., QNLI and RTE), run with bash scripts/run_cls.sh. For question answering (QA) tasks, run with bash scripts/run_qa.sh

When generating X (i.e., denotes text in TC, hypothesis in NLI and question in QA) in the final stage of the scripts, we also train the small model and evaluate it on human annotations. Specifically, after generating log_every number of examples, we perform training on the synthetic dataset and evaluation on the gold validation set. This gives as a trend graph similar to Figure 2 in the paper, which is shown by wandb, a powerful toolkit to track experiments.

Before running, you need to reset the following parameters to yours:

  • home_dir: path to ZeroGen
  • gpu: gpu id
  • batch_size: the batch size for generating with PLM. For SST-2, it costs ~16G when using a batch size of 32 with gpt2-xl. While for SQuAD, it costs ~60G using the same batch size and PLM because of the longer contexts. So decrease the batch size if needed.
  • WANDB_PROJECT: project name, by default ZeroGen
  • WANDB_ENTITY: your wandb username
  • WANDB_API_KEY: your api-key

By default we use GPT2-XL as pre-trained language model (PLM) and DistilBERT as tiny-task model (TAM), to modify the size of PLM and TAM, you can change model_name and small_model_name in run_xxx.sh scripts.

Run with a synthesized dataset

After dataset generation, we save the synthetic dataset at:

  • For TC and NLI: out-${task_name}-x2/${dataset}/${task_name}-dataset.jsonl (e.g., out-sst-2-x2/gpt2-xl_topk0_topp0.9_sst-2-x2/sst-2-dataset.jsonl). The file is in json line format (e.g., {"C": "The Book of Mormon Musical", "X": "The Book of Mormon Musical brings all the drama and excitement of a real revival of the Broadway production to the big screen.", "Y": 0}).
  • For QA: out-${task_name}-x2/${dataset}. We save the dataset in huggingface Dataset format.

To run DistilBERT given a generated dataset, you can use the scripts/run_distilbert.sh script.

To run a LSTM-based model given a generated dataset, you can use the scripts/run_cls_lstm.sh script. Before that, you have to download the datasets from google drive link, which contain the standard test files.

Diversity and Correctness of a synthesized dataset

Divesity

We use Self-BLEU to measure the diversity of a synthesized dataset. To calculate the Self-BLEU for a given dataset, you can see the example in scripts/run_self_bleu.sh script.

Correctness

To calculate the Correctness, you can take the following steps:

  1. Replace the following parameters in scripts/run_distilbert.sh script with:

    • small_model_name=roberta-large
    • dataset=: empty means using standard training set
    • limit=: empty means using full standard training set

    This will give you a RoBERTa-Large trained with full human annotations, which can be used as an evaluator.

  2. Replace the following parameters in scripts/run_distilbert.sh script with:

    • small_model_ckpt=tmp/checkpoint-xxx: the final RoBERTa-Large checkpoint saved in step 1.
    • limit=10000: the number of samples to use, by default 10000
    • dataset=xxx: the name of synthetic dataset (e.g., gpt2-xl_topk0_topp0.9_sst-2-x2)
    • no_train=true: disable training

    Run the script, and you will get Metric on standard dataset and Metric on synthetic dataset, which represents the Correctness of standard dataset and synthetic dataset, respectively.

Resources

We provide some synthetic datasets and standard datasets for training LSTM in this google drive link. When training DistilBERT, the standard dataset is directly downloaded by huggingface Dataset package. Note we use the same prompt for IMDb/SST-2, and SQuAD/AdversarialQA, therefore the synthetic datasets are also the same.

Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

Kim Seonghyeon 502 Jan 03, 2023
OpenMMLab Image and Video Editing Toolbox

Introduction MMEditing is an open source image and video editing toolbox based on PyTorch. It is a part of the OpenMMLab project. The master branch wo

OpenMMLab 3.9k Jan 04, 2023
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
3D-aware GANs based on NeRF (arXiv).

CIPS-3D This repository will contain the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis.

Peterou 563 Dec 31, 2022
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
A PyTorch implementation of unsupervised SimCSE

A PyTorch implementation of unsupervised SimCSE

99 Dec 23, 2022
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Yaoming Cai 5 Jul 18, 2022
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Research Unit of Medical Imaging, Physics and Technology 256 Jan 08, 2023
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022