A PyTorch implementation of the Transformer model in "Attention is All You Need".

Overview

Attention is all you need: A Pytorch Implementation

This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, arxiv, 2017).

A novel sequence to sequence framework utilizes the self-attention mechanism, instead of Convolution operation or Recurrent structure, and achieve the state-of-the-art performance on WMT 2014 English-to-German translation task. (2017/06/12)

The official Tensorflow Implementation can be found in: tensorflow/tensor2tensor.

To learn more about self-attention mechanism, you could read "A Structured Self-attentive Sentence Embedding".

The project support training and translation with trained model now.

Note that this project is still a work in progress.

BPE related parts are not yet fully tested.

If there is any suggestion or error, feel free to fire an issue to let me know. :)

Usage

WMT'16 Multimodal Translation: de-en

An example of training for the WMT'16 Multimodal Translation task (http://www.statmt.org/wmt16/multimodal-task.html).

0) Download the spacy language model.

# conda install -c conda-forge spacy 
python -m spacy download en
python -m spacy download de

1) Preprocess the data with torchtext and spacy.

python preprocess.py -lang_src de -lang_trg en -share_vocab -save_data m30k_deen_shr.pkl

2) Train the model

python train.py -data_pkl m30k_deen_shr.pkl -log m30k_deen_shr -embs_share_weight -proj_share_weight -label_smoothing -output_dir output -b 256 -warmup 128000 -epoch 400

3) Test the model

python translate.py -data_pkl m30k_deen_shr.pkl -model trained.chkpt -output prediction.txt

[(WIP)] WMT'17 Multimodal Translation: de-en w/ BPE

1) Download and preprocess the data with bpe:

Since the interfaces is not unified, you need to switch the main function call from main_wo_bpe to main.

python preprocess.py -raw_dir /tmp/raw_deen -data_dir ./bpe_deen -save_data bpe_vocab.pkl -codes codes.txt -prefix deen

2) Train the model

python train.py -data_pkl ./bpe_deen/bpe_vocab.pkl -train_path ./bpe_deen/deen-train -val_path ./bpe_deen/deen-val -log deen_bpe -embs_share_weight -proj_share_weight -label_smoothing -output_dir output -b 256 -warmup 128000 -epoch 400

3) Test the model (not ready)

  • TODO:
    • Load vocabulary.
    • Perform decoding after the translation.

Performance

Training

  • Parameter settings:
    • batch size 256
    • warmup step 4000
    • epoch 200
    • lr_mul 0.5
    • label smoothing
    • do not apply BPE and shared vocabulary
    • target embedding / pre-softmax linear layer weight sharing.

Testing

  • coming soon.

TODO

  • Evaluation on the generated text.
  • Attention weight plot.

Acknowledgement

  • The byte pair encoding parts are borrowed from subword-nmt.
  • The project structure, some scripts and the dataset preprocessing steps are heavily borrowed from OpenNMT/OpenNMT-py.
  • Thanks for the suggestions from @srush, @iamalbert, @Zessay, @JulesGM, @ZiJianZhao, and @huanghoujing.
Owner
Yu-Hsiang Huang
Natural Language Processing Lab. National Taiwan University. Deep Learning enthusiast.
Yu-Hsiang Huang
NAACL 2022: MCSE: Multimodal Contrastive Learning of Sentence Embeddings

MCSE: Multimodal Contrastive Learning of Sentence Embeddings This repository contains code and pre-trained models for our NAACL-2022 paper MCSE: Multi

Saarland University Spoken Language Systems Group 39 Nov 15, 2022
BookNLP, a natural language processing pipeline for books

BookNLP BookNLP is a natural language processing pipeline that scales to books and other long documents (in English), including: Part-of-speech taggin

654 Jan 02, 2023
PUA Programming Language written in Python.

pua-lang PUA Programming Language written in Python. Installation git clone https://github.com/zhaoyang97/pua-lang.git cd pua-lang pip install . Try

zy 4 Feb 19, 2022
Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks

TestRank in Pytorch Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks by Yu Li, Min Li, Qiuxia Lai, Ya

3 May 19, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

606 Dec 28, 2022
FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE

* MY SOCIAL MEDIA : Programming And Memes Want to contact Mr. Error ? CONTACT : [ema

Mr. Error 9 Jun 17, 2021
πŸš€Clone a voice in 5 seconds to generate arbitrary speech in real-time

English | δΈ­ζ–‡ Features 🌍 Chinese supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc. ?

Vega 25.6k Dec 31, 2022
VoiceFixer VoiceFixer is a framework for general speech restoration.

VoiceFixer VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech. Paper

Leo 174 Jan 06, 2023
Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

AI-BOT Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

Thempra 2 Dec 21, 2022
Official code for "Parser-Free Virtual Try-on via Distilling Appearance Flows", CVPR 2021

Parser-Free Virtual Try-on via Distilling Appearance Flows, CVPR 2021 Official code for CVPR 2021 paper 'Parser-Free Virtual Try-on via Distilling App

395 Jan 03, 2023
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing πŸŽ‰ πŸŽ‰ πŸŽ‰ We released the 2.0.0 version with TF2 Support. πŸŽ‰ πŸŽ‰ πŸŽ‰ If you

Eliyar Eziz 2.3k Dec 29, 2022
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
Trained T5 and T5-large model for creating keywords from text

text to keywords Trained T5-base and T5-large model for creating keywords from text. Supported languages: ru Pretraining Large version | Pretraining B

Danil 61 Nov 24, 2022
Phomber is infomation grathering tool that reverse search phone numbers and get their details, written in python3.

A Infomation Grathering tool that reverse search phone numbers and get their details ! What is phomber? Phomber is one of the best tools available fo

S41R4J 121 Dec 27, 2022
Paddle2.x version AI-Writer

Paddle2.x η‰ˆζœ¬AI-Writer 用魔改 GPT η”Ÿζˆη½‘ζ–‡γ€‚Tuned GPT for novel generation.

yujun 74 Jan 04, 2023
Korean Sentence Embedding Repository

Korean-Sentence-Embedding 🍭 Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides

80 Jan 02, 2023
Rhasspy 673 Dec 28, 2022
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Ubiquitous Knowledge Processing Lab 59 Dec 01, 2022
Bpe algorithm can finetune tokenizer - Bpe algorithm can finetune tokenizer

"# bpe_algorithm_can_finetune_tokenizer" this is an implyment for https://github

张博 1 Feb 02, 2022
AI-Broad-casting - AI Broad casting with python

Basic Code 1. Use The Code Configuration Environment conda create -n code_base p