Machine Learning Course with Python:

Overview

A Machine Learning Course with Python

https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat https://badges.frapsoft.com/os/v2/open-source.png?v=103 https://img.shields.io/twitter/follow/machinemindset.svg?label=Follow&style=social

Table of Contents

Download Free Deep Learning Resource Guide

Slack Group

Introduction

The purpose of this project is to provide a comprehensive and yet simple course in Machine Learning using Python.

Motivation

Machine Learning, as a tool for Artificial Intelligence, is one of the most widely adopted scientific fields. A considerable amount of literature has been published on Machine Learning. The purpose of this project is to provide the most important aspects of Machine Learning by presenting a series of simple and yet comprehensive tutorials using Python. In this project, we built our tutorials using many different well-known Machine Learning frameworks such as Scikit-learn. In this project you will learn:

  • What is the definition of Machine Learning?
  • When it started and what is the trending evolution?
  • What are the Machine Learning categories and subcategories?
  • What are the mostly used Machine Learning algorithms and how to implement them?

Machine Learning

Title Document
An Introduction to Machine Learning Overview

Machine Learning Basics

_img/intro.png
Title Code Document
Linear Regression Python Tutorial
Overfitting / Underfitting Python Tutorial
Regularization Python Tutorial
Cross-Validation Python Tutorial

Supervised learning

_img/supervised.gif
Title Code Document
Decision Trees Python Tutorial
K-Nearest Neighbors Python Tutorial
Naive Bayes Python Tutorial
Logistic Regression Python Tutorial
Support Vector Machines Python Tutorial

Unsupervised learning

_img/unsupervised.gif
Title Code Document
Clustering Python Tutorial
Principal Components Analysis Python Tutorial

Deep Learning

_img/deeplearning.png
Title Code Document
Neural Networks Overview Python Tutorial
Convolutional Neural Networks Python Tutorial
Autoencoders Python Tutorial
Recurrent Neural Networks Python IPython

Pull Request Process

Please consider the following criterions in order to help us in a better way:

  1. The pull request is mainly expected to be a link suggestion.
  2. Please make sure your suggested resources are not obsolete or broken.
  3. Ensure any install or build dependencies are removed before the end of the layer when doing a build and creating a pull request.
  4. Add comments with details of changes to the interface, this includes new environment variables, exposed ports, useful file locations and container parameters.
  5. You may merge the Pull Request in once you have the sign-off of at least one other developer, or if you do not have permission to do that, you may request the owner to merge it for you if you believe all checks are passed.

Final Note

We are looking forward to your kind feedback. Please help us to improve this open source project and make our work better. For contribution, please create a pull request and we will investigate it promptly. Once again, we appreciate your kind feedback and support.

Developers

Creator: Machine Learning Mindset [Blog, GitHub, Twitter]

Supervisor: Amirsina Torfi [GitHub, Personal Website, Linkedin ]

Developers: Brendan Sherman*, James E Hopkins* [Linkedin], Zac Smith [Linkedin]

NOTE: This project has been developed as a capstone project offered by [CS 4624 Multimedia/ Hypertext course at Virginia Tech] and Supervised and supported by [Machine Learning Mindset].

*: equally contributed

Citation

If you found this course useful, please kindly consider citing it as below:

@software{amirsina_torfi_2019_3585763,
  author       = {Amirsina Torfi and
                  Brendan Sherman and
                  Jay Hopkins and
                  Eric Wynn and
                  hokie45 and
                  Frederik De Bleser and
                  李明岳 and
                  Samuel Husso and
                  Alain},
  title        = {{machinelearningmindset/machine-learning-course:
                   Machine Learning with Python}},
  month        = dec,
  year         = 2019,
  publisher    = {Zenodo},
  version      = {1.0},
  doi          = {10.5281/zenodo.3585763},
  url          = {https://doi.org/10.5281/zenodo.3585763}
}
Comments
  • OF and LR updates

    OF and LR updates

    Taking into account review notes. Having trouble setting up my python environment, so I have not been able to test the code yet. I hope to fix that today/tomorrow. Fixed the table in LR.

    opened by BroccoliHijinx 11
  • Multilayer Perceptron write-up

    Multilayer Perceptron write-up

    Submitting a PR now to allow for comments on what is done. There are placeholders for what is left to be done, and I should be able to do that tomorrow.

    Left to do;

    images and associated text

    More on backprop

    Defining and explaining actual MLPs (most right now is on NN basics)

    opened by BroccoliHijinx 3
  • Addressed comments brought up in peer review

    Addressed comments brought up in peer review

    I decided to remove the multiple linear regression section because it seems beyond the scope of this module. Those images, MLR.png and MLR_POBF.png, can safely be removed from our image folder. I left a mention to it for completeness. I also added captions for all figures and equations to explain what they are.

    opened by b-sherman 3
  • Logistic Regression Files, some overfitting changes

    Logistic Regression Files, some overfitting changes

    Within Logistic Regression, I have a table that I cannot get working. I want to keep messing around with it, but I'm not sure what is wrong. I am using the rst basic table, but I think the spacing is off somehow.

    opened by BroccoliHijinx 3
  • Naive bayes question

    Naive bayes question

    Hi @astorfi , Thanks for your great work ! I'm a beginner of ML. Tonight when I learn Naive Bayes Classification in your tutorial, I found the Equation 1 in the tutorial is different from that in Wiki. I wonder which one is correct or both of them are right?

    image


    image

    Look forward to your reply.

    opened by suedroplet 2
  • Chinese Translation

    Chinese Translation

    Hi @astorfi , Thanks for your great work ! My friends and I have learned a lot here. China has a platform called KESCI (https://www.kesci.com). They provide algorithm competition opportunities for developers, which is similar to Kaggle, and self - training online environment to enhance their algorithmic ability. I am going to translate the whole series to Chinese and applied for a column to publish them on KESCI, as a series. Hope to get your permission. thanks.

    opened by Vivian0210 2
  • Overfitting rst file

    Overfitting rst file

    I don't think including code with this module makes much sense, so I just included a write-up. I tried to keep it short and simple, since this is something to keep in mind in the entire course.

    opened by BroccoliHijinx 2
  • Naive bayes

    Naive bayes

    I just created a new branch for the updated naive bayes files since the old one is very far behind now. Included are the images, code, and module text.

    opened by b-sherman 1
  • Linear regression

    Linear regression

    I redid all the linear regression code with a completely new data set to assure originality and because the existing scikit-learn ones are confusing to me so they are bound to be confusing to a new reader. I also changed all the images to reflect the new code. I tried to simplify the code as much as possible and only used the bare minimum number of references to scikit-learn functions. I also revised the rst document to reflect these changes. All generated images now have a link to the code I used to create them as well because it seemed like a good idea.

    opened by b-sherman 1
  • Updated linear_regression.rst

    Updated linear_regression.rst

    +Added a Motivation section that talks about what the problem is +Changed raw URLs into hyperlinks on smaller words +Added a Code section that links to the module code and talks about what it does +Added a Conclusion section to close out the module

    opened by b-sherman 1
  • Reference fixes

    Reference fixes

    Changed the "References" indent level in several modules to be consistent. Changed header casing in some modules to be consistent. Requesting merge so that the site can be updated for screenshots to include in the final project report.

    opened by b-sherman 0
Releases(1.0)
Owner
Instill AI
A company offering AI-based solutions to real-world applications.
Instill AI
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022
Test symmetries with sklearn decision tree models

Test symmetries with sklearn decision tree models Setup Begin from an environment with a recent version of python 3. source setup.sh Leave the enviro

Rupert Tombs 2 Jul 19, 2022
Machine Learning for Time-Series with Python.Published by Packt

Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am

Packt 124 Dec 28, 2022
Turns your machine learning code into microservices with web API, interactive GUI, and more.

Turns your machine learning code into microservices with web API, interactive GUI, and more.

Machine Learning Tooling 2.8k Jan 02, 2023
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Derek Snow 465 Jan 02, 2023
Predicting diabetes over a five year period using logistic regression and the Pima First-Nation dataset

Diabetes This script uses the Pima First Nations dataset to create a model to predict whether or not an individual will develop Diabetes Mellitus Type

1 Mar 28, 2022
Factorization machines in python

Factorization Machines in Python This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive re

Corey Lynch 892 Jan 03, 2023
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Microsoft 241 Dec 26, 2022
A high-performance topological machine learning toolbox in Python

giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G

giotto.ai 632 Dec 29, 2022
Create large-scale ML-driven multiscale simulation ensembles to study the interactions

MuMMI RAS v0.1 Released: Nov 16, 2021 MuMMI RAS is the application component of the MuMMI framework developed to create large-scale ML-driven multisca

4 Feb 16, 2022
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
Falken provides developers with a service that allows them to train AI that can play their games

Falken provides developers with a service that allows them to train AI that can play their games. Unlike traditional RL frameworks that learn through rewards or batches of offline training, Falken is

Google Research 223 Jan 03, 2023
WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging.

WAGMA-SGD is a decentralized asynchronous SGD based on wait-avoiding group model averaging. The synchronization is relaxed by making the collectives externally-triggerable, namely, a collective can b

Shigang Li 6 Jun 18, 2022
Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogramas anuais com spark, em pyspark e SQL!

Olá! Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogr

Henrique de Paula 10 Apr 04, 2022
Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Felix Daudi 1 Jan 06, 2022
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.

Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG) Divyat Mahajan, Shruti Tople, Amit Sharma Privacy & Causal Learning

Microsoft 149 Jan 06, 2023
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 648 Dec 16, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
Book Item Based Collaborative Filtering

Book-Item-Based-Collaborative-Filtering Collaborative filtering methods are used

Şebnem 3 Jan 06, 2022
ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions

A library for debugging/inspecting machine learning classifiers and explaining their predictions

154 Dec 17, 2022