Monitor the stability of a pandas or spark dataframe ⚙︎

Overview

Population Shift Monitoring

Build status Package docs status Latest GitHub release GitHub Release Date PyPi downloads

POPMON logo

popmon is a package that allows one to check the stability of a dataset. popmon works with both pandas and spark datasets.

popmon creates histograms of features binned in time-slices, and compares the stability of the profiles and distributions of those histograms using statistical tests, both over time and with respect to a reference. It works with numerical, ordinal, categorical features, and the histograms can be higher-dimensional, e.g. it can also track correlations between any two features. popmon can automatically flag and alert on changes observed over time, such as trends, shifts, peaks, outliers, anomalies, changing correlations, etc, using monitoring business rules.

Traffic Light Overview

Announcements

Spark 3.0

With Spark 3.0, based on Scala 2.12, make sure to pick up the correct histogrammar jar files:

spark = SparkSession.builder.config(
    "spark.jars.packages",
    "io.github.histogrammar:histogrammar_2.12:1.0.20,io.github.histogrammar:histogrammar-sparksql_2.12:1.0.20",
).getOrCreate()

For Spark 2.X compiled against scala 2.11, in the string above simply replace 2.12 with 2.11.

Examples

Documentation

The entire popmon documentation including tutorials can be found at read-the-docs.

Notebooks

Tutorial Colab link
Basic tutorial Open in Colab
Detailed example (featuring configuration, Apache Spark and more) Open in Colab
Incremental datasets (online analysis) Open in Colab
Report interpretation (step-by-step guide) Open in Colab

Check it out

The popmon library requires Python 3.6+ and is pip friendly. To get started, simply do:

$ pip install popmon

or check out the code from our GitHub repository:

$ git clone https://github.com/ing-bank/popmon.git
$ pip install -e popmon

where in this example the code is installed in edit mode (option -e).

You can now use the package in Python with:

import popmon

Congratulations, you are now ready to use the popmon library!

Quick run

As a quick example, you can do:

import pandas as pd
import popmon
from popmon import resources

# open synthetic data
df = pd.read_csv(resources.data("test.csv.gz"), parse_dates=["date"])
df.head()

# generate stability report using automatic binning of all encountered features
# (importing popmon automatically adds this functionality to a dataframe)
report = df.pm_stability_report(time_axis="date", features=["date:age", "date:gender"])

# to show the output of the report in a Jupyter notebook you can simply run:
report

# or save the report to file
report.to_file("monitoring_report.html")

To specify your own binning specifications and features you want to report on, you do:

# time-axis specifications alone; all other features are auto-binned.
report = df.pm_stability_report(
    time_axis="date", time_width="1w", time_offset="2020-1-6"
)

# histogram selections. Here 'date' is the first axis of each histogram.
features = [
    "date:isActive",
    "date:age",
    "date:eyeColor",
    "date:gender",
    "date:latitude",
    "date:longitude",
    "date:isActive:age",
]

# Specify your own binning specifications for individual features or combinations thereof.
# This bin specification uses open-ended ("sparse") histograms; unspecified features get
# auto-binned. The time-axis binning, when specified here, needs to be in nanoseconds.
bin_specs = {
    "longitude": {"bin_width": 5.0, "bin_offset": 0.0},
    "latitude": {"bin_width": 5.0, "bin_offset": 0.0},
    "age": {"bin_width": 10.0, "bin_offset": 0.0},
    "date": {
        "bin_width": pd.Timedelta("4w").value,
        "bin_offset": pd.Timestamp("2015-1-1").value,
    },
}

# generate stability report
report = df.pm_stability_report(features=features, bin_specs=bin_specs, time_axis=True)

These examples also work with spark dataframes. You can see the output of such example notebook code here. For all available examples, please see the tutorials at read-the-docs.

Pipelines for monitoring dataset shift

Advanced users can leverage popmon's modular data pipeline to customize their workflow. Visualization of the pipeline can be useful when debugging, or for didactic purposes. There is a script included with the package that you can use. The plotting is configurable, and depending on the options you will obtain a result that can be used for understanding the data flow, the high-level components and the (re)use of datasets.

Pipeline Visualization

Example pipeline visualization (click to enlarge)

Resources

Presentations

Title Host Date Speaker
Popmon - population monitoring made easy Big Data Technology Warsaw Summit 2021 February 25, 2021 Simon Brugman
Popmon - population monitoring made easy Data Lunch @ Eneco October 29, 2020 Max Baak, Simon Brugman
Popmon - population monitoring made easy Data Science Summit 2020 October 16, 2020 Max Baak
Population Shift Monitoring Made Easy: the popmon package Online Data Science Meetup @ ING WBAA July 8 2020 Tomas Sostak
Popmon: Population Shift Monitoring Made Easy PyData Fest Amsterdam 2020 June 16, 2020 Tomas Sostak
Popmon: Population Shift Monitoring Made Easy Amundsen Community Meetup June 4, 2020 Max Baak

Articles

Title Date Author
Population Shift Analysis: Monitoring Data Quality with Popmon May 21, 2021 Vito Gentile
Popmon Open Source Package — Population Shift Monitoring Made Easy May 20, 2020 Nicole Mpozika

Project contributors

This package was authored by ING Wholesale Banking Advanced Analytics. Special thanks to the following people who have contributed to the development of this package: Ahmet Erdem, Fabian Jansen, Nanne Aben, Mathieu Grimal.

Contact and support

Please note that ING WBAA provides support only on a best-effort basis.

License

Copyright ING WBAA. popmon is completely free, open-source and licensed under the MIT license.

Comments
  • feat: hist_juxtaposition

    feat: hist_juxtaposition

    For now, the last_n is by default set to 2. Therefore, only two dates would appear in the dropdown. For the airline dataset if the last_n is set to max, popmon runs into the issue (for DEPARTURE feature) raised by Tomek https://github.com/ing-bank/popmon/issues/244.

    Screenshot 2022-08-15 at 19 39 24

    closes ing-bank/popmon#230

    enhancement 
    opened by pradyot-09 7
  • Error when stitching histograms

    Error when stitching histograms

    Discussed in https://github.com/ing-bank/popmon/discussions/142

    Originally posted by jeaninejuliettes September 29, 2021 Hello,

    I'm receiving an error when using stitch_histogram and I'm not sure what I'm doing wrong, hope anyone can help me. The error I get is: ValueError: Request to insert delta hists but time_bin_idx not set. Please do.

    The steps I take:

    I start with creating a histogrammar object of the original dataframe

    hists = df.pm_make_histograms() bin_specs = popmon.get_bin_specs(hists)

    later on I receive a new batch of data, which I add to my existing histograms

    new_hists = [new_df.pm_make_histograms(bin_specs=bin_specs)] hists_2= popmon.stitch_histograms(hists_basis=hists, hists_delta=new_hists, time_axis="batch")

    so far so good, but when I try to repeat these steps with yet another new batch of data, I receive the error

    new_hists_2 = [new_df_2.pm_make_histograms(bin_specs=bin_specs)] hists_3 = popmon.stitch_histograms(hists_basis=hists_2, hists_delta=new_hists_2, time_axis="batch")

    Is it not possible to stitch another histogram again? If not, I've found a bit of a cumbersome way to decide on what a good value for my time_bin_idx is. It works so far, but I'm expecting it too fail with other data (or not to work as expected). The way I define the time_bin_idx value is: int(np.ceil(max(hists_2[next(iter(hists_2))].bin_centers()) + 1))

    Hopefully you can point me in the right direction. Thanks!

    opened by mbaak 6
  • Error: cannot import name 'Report' from 'popmon.config'

    Error: cannot import name 'Report' from 'popmon.config'

    Code:

    import popmon from popmon import resources from popmon.config import Report

    Got error: ImportError Traceback (most recent call last) /tmp/ipykernel_707/1841834346.py in 3 import popmon 4 from popmon import resources ----> 5 from popmon.config import Report, Setting

    ImportError: cannot import name 'Report' from 'popmon.config' (/home/user/.local/lib/python3.7/site-packages/popmon/config.py)

    opened by lcheng61 4
  • Error with pydantic when using some custom settings in the report generation

    Error with pydantic when using some custom settings in the report generation

    With version 1.0.0, when using custom settings in df.pm_stability_report() like show_stats, I get an error stating such option is not allowed:

    ValidationError: 2 validation errors for Settings

    I couldn't reproduce it when using popmon==0.9.0.

    opened by gus-morales 3
  • DataProfiler - A Scalable Data Profiling Library

    DataProfiler - A Scalable Data Profiling Library

    Howdy!

    I'm reaching out as a maintainer of the DataProfiler library.

    I think it might be useful to your project so I'm reaching out! Would love to collaborate and see how we can help popmon.

    We effectively wrote a library to improve upon the objectives of pandas-profiling with some neat added functionality:

    • Auto-Detect & Load: CSV, AVRO, Parquet, JSON, Text, URL data = Data("your_filepath_or_url.csv")
    • Profile data: calculating statistics and doing entity detection (for PII) profile = Profiler(data)
    • Merge profiles: profile3 = profile1 + profile2; enabling distributed profile generation
    • Compare profiles: profile_diff = profile1.diff(profile2)
    • Generate reports: readable_report = profile.report(report_options={"output_format": "compact"})
    import json
    from dataprofiler import Data, Profiler
    
    data = Data("your_file.csv") # Auto-Detect & Load: CSV, AVRO, Parquet, JSON, Text, URL
    
    print(data.data.head(5)) # Access data directly via a compatible Pandas DataFrame
    
    profile = Profiler(data) # Calculate Statistics, Entity Recognition, etc
    
    readable_report = profile.report(report_options={"output_format": "compact"})
    
    print(json.dumps(readable_report, indent=4))
    
    opened by lettergram 3
  • Library doesn't run in Spark 3.0+: Replace the dependency of histogrammar with native Spark functionality

    Library doesn't run in Spark 3.0+: Replace the dependency of histogrammar with native Spark functionality

    Currently, the dependency with the library, which hasn't been further developed since 2016, creates a dependency with Scala 2.11 which limits the execution in Spark 3.0 (which was only built on Scala 2.12). I think I could replace the functionality with Bucketizer functionality in native spark.

    opened by kedemdor 3
  • Imports Optimized

    Imports Optimized

    isort helps you to sort your import list. It simply optimized the script and increases the readability.

    There is no big change in the concept. Algorithms are still working as well.

    I'm contributing for Hacktoberfest. I will appreciate it if you add the "Hacktoberfest" label to this PR. :) Thanks.

    opened by lnxpy 3
  • missing tutorial datasets

    missing tutorial datasets

    Hi, awesome tool!

    Advanced tutorial datasets are not in test_data dir, but still in notebooks dir, as far as I can see. Hence the advanced tutorial notebooks don't run out of the box, at least for me. I don't have permissions to push to a develop branch.

    Changes to be committed: (use "git reset HEAD ..." to unstage)

    renamed:    popmon/notebooks/flight_delays.csv.gz -> popmon/test_data/flight_delays.csv.gz
    renamed:    popmon/notebooks/flight_delays_reference.csv.gz -> popmon/test_data/flight_delays_reference.csv.gz
    

    Cheers - Alex

    opened by AlexKoutsman 3
  • build(deps): update docutils requirement from <0.17 to <0.20

    build(deps): update docutils requirement from <0.17 to <0.20

    Updates the requirements on docutils to permit the latest version.

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    dependencies 
    opened by dependabot[bot] 2
  • Feat/plotly express

    Feat/plotly express

    • The histograms, heatmaps and comparisons have been replaced with interactive Plotly graphs. Plotly.js is used to build the graphs on the go from json.
    • Initial tests show that plotly reports are smaller in size compared to matplotlib and the takes way less time for report generation compared to matplotlib.
    • use parameter 'online_report' to use plotly.js from cdn server and use report online. Else, plotly.js is embedded in the report and can be used offline too.

    newplot

    newplot (3)

    newplot (2)

    closes ing-bank/popmon#164

    enhancement reporting 
    opened by pradyot-09 2
  • Feature/heatmap time series plotting

    Feature/heatmap time series plotting

    Added heatmap feature to visualize features over time for EDA.

    image

    Screenshot 2022-05-09 at 15 03 53

    User can set Heatmap color map by giving the 'cmap' argument pm_stability report(). User can set top_n argument to deal with high cardinality. User can disable specific heatmap by giving heatmap name in the disable_heatmap[] argument in the pm_stability_report().

    closes ing-bank/popmon#185 closes ing-bank/popmon#199

    opened by pradyot-09 2
  • Rolling reference comparisons

    Rolling reference comparisons

    A wide variety of references is provided by popmon out-of-the-box. A reference may be static (a fixed training set, or the current dataset itself for exploratory data analysis) or dynamic (sliding or growing as more data becomes available). The reference is compared against batches, and they can be sequential (batched) or sliding (rolling).

    Popmon should enable all combinations, and currently lacks external reference + rolling comparison.

    | | Reference | Compare to | Implemented | |---|---|---|---| | Self-reference | Static | Self (batched) | ✓ | | External reference | Static | Batched | ✓ | | Rolling reference | Rolling | Rolling/sliding | ✓ | | Expanding reference | Expanding | Rolling/sliding | ✓ | | External reference | Static | Rolling/sliding | ✗ |

    Thanks to @LorenaPoenaru!

    enhancement 
    opened by sbrugman 0
  • code coverage of 100%

    code coverage of 100%

    The risk of breaking functionality on introducing new features could be reduced by ensuring that each line of code is covered by the tests and that this is enforced at test time. Other repos, such as this also use this.

    For that, we can include pytest-cov to the test dependencies and increase the test coverage until it passes (see this annswer).

    good first issue help wanted CI internal improvement 
    opened by sbrugman 0
  • Traffic light boundaries for count variables

    Traffic light boundaries for count variables

    The traffic light bounds provided by the pull/Z-score calculation are symmetrical. For count variables this can lead to bounds outside the constraints (below zero).

    enhancement statistics 
    opened by sbrugman 0
  • Reject unsupported column types

    Reject unsupported column types

    Running popmon on a DataFrame with columns containing mutable sequences, tuples or sets generates cryptic errors. popmon should return an error message.

    enhancement good first issue API 
    opened by sbrugman 0
Releases(v1.4.0)
Owner
ING Bank
ING Open-source projects
ING Bank
Pizza Orders Data Pipeline Usecase Solved by SQL, Sqoop, HDFS, Hive, Airflow.

PizzaOrders_DataPipeline There is a Tony who is owning a New Pizza shop. He knew that pizza alone was not going to help him get seed funding to expand

Melwin Varghese P 4 Jun 05, 2022
Creating a statistical model to predict 10 year treasury yields

Predicting 10-Year Treasury Yields Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had

10 Oct 27, 2021
A utility for functional piping in Python that allows you to access any function in any scope as a partial.

WithPartial Introduction WithPartial is a simple utility for functional piping in Python. The package exposes a context manager (used with with) calle

Michael Milton 1 Oct 26, 2021
Project under the certification "Data Analysis with Python" on FreeCodeCamp

Sea Level Predictor Assignment You will anaylize a dataset of the global average sea level change since 1880. You will use the data to predict the sea

Bhavya Gopal 3 Jan 31, 2022
Includes all files needed to satisfy hw02 requirements

HW 02 Data Sets Mean Scale Score for Asian and Hispanic Students, Grades 3 - 8 This dataset provides insights into the New York City education system

7 Oct 28, 2021
Powerful, efficient particle trajectory analysis in scientific Python.

freud Overview The freud Python library provides a simple, flexible, powerful set of tools for analyzing trajectories obtained from molecular dynamics

Glotzer Group 195 Dec 20, 2022
An implementation of the largeVis algorithm for visualizing large, high-dimensional datasets, for R

largeVis This is an implementation of the largeVis algorithm described in (https://arxiv.org/abs/1602.00370). It also incorporates: A very fast algori

336 May 25, 2022
nrgpy is the Python package for processing NRG Data Files

nrgpy nrgpy is the Python package for processing NRG Data Files Website and source: https://github.com/nrgpy/nrgpy Documentation: https://nrgpy.github

NRG Tech Services 23 Dec 08, 2022
DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN

DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN. Allowing for both categorical and numerical data, DenseClus makes it possible to incorporate all features in cluste

Amazon Web Services - Labs 53 Dec 08, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Jan 02, 2023
Yet Another Workflow Parser for SecurityHub

YAWPS Yet Another Workflow Parser for SecurityHub "Screaming pepper" by Rum Bucolic Ape is licensed with CC BY-ND 2.0. To view a copy of this license,

myoung34 8 Dec 22, 2022
A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful.

How useful is the aswer? A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful. If you want to l

1 Dec 17, 2021
📊 Python Flask game that consolidates data from Nasdaq, allowing the user to practice buying and selling stocks.

Web Trader Web Trader is a trading website that consolidates data from Nasdaq, allowing the user to search up the ticker symbol and price of any stock

Paulina Khew 21 Aug 30, 2022
A data analysis using python and pandas to showcase trends in school performance.

A data analysis using python and pandas to showcase trends in school performance. A data analysis to showcase trends in school performance using Panda

Jimmy Faccioli 0 Sep 07, 2021
Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data.

PremiershipPlayerAnalysis Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data. No

5 Sep 06, 2021
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
A DSL for data-driven computational pipelines

"Dataflow variables are spectacularly expressive in concurrent programming" Henri E. Bal , Jennifer G. Steiner , Andrew S. Tanenbaum Quick overview Ne

1.9k Jan 03, 2023
Advanced Pandas Vault — Utilities, Functions and Snippets (by @firmai).

PandasVault ⁠— Advanced Pandas Functions and Code Snippets The only Pandas utility package you would ever need. It has no exotic external dependencies

Derek Snow 374 Jan 07, 2023
Pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).

AWS Data Wrangler Pandas on AWS Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretMana

Amazon Web Services - Labs 3.3k Jan 04, 2023
Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

Datashader is a data rasterization pipeline for automating the process of creating meaningful representations of large amounts of data.

HoloViz 2.9k Jan 06, 2023