🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Overview

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training

DOI DOI

Habitat is a tool that predicts a deep neural network's training iteration execution time on a given GPU. It currently supports PyTorch. To learn more about how Habitat works, please see our research paper.

Running From Source

Currently, the only way to run Habitat is to build it from source. You should use the Docker image provided in this repository to make sure that you can compile the code.

  1. Download the Habitat pre-trained models.
  2. Run extract-models.sh under analyzer to extract and install the pre-trained models.
  3. Run setup.sh under docker/ to build the Habitat container image.
  4. Run start.sh to start a new container. By default, your home directory will be mounted inside the container under ~/home.
  5. Once inside the container, run install-dev.sh under analyzer/ to build and install the Habitat package.
  6. In your scripts, import habitat to get access to Habitat. See experiments/run_experiment.py for an example showing how to use Habitat.

License

The code in this repository is licensed under the Apache 2.0 license (see LICENSE and NOTICE), with the exception of the files mentioned below.

This software contains source code provided by NVIDIA Corporation. These files are:

  • The code under cpp/external/cupti_profilerhost_util/ (CUPTI sample code)
  • cpp/src/cuda/cuda_occupancy.h

The code mentioned above is licensed under the NVIDIA Software Development Kit End User License Agreement.

We include the implementations of several deep neural networks under experiments/ for our evaluation. These implementations are copyrighted by their original authors and carry their original licenses. Please see the corresponding README files and license files inside the subdirectories for more information.

Research Paper

Habitat began as a research project in the EcoSystem Group at the University of Toronto. The accompanying research paper will appear in the proceedings of USENIX ATC'21. If you are interested, you can read a preprint of the paper here.

If you use Habitat in your research, please consider citing our paper:

@inproceedings{habitat-yu21,
  author = {Yu, Geoffrey X. and Gao, Yubo and Golikov, Pavel and Pekhimenko,
    Gennady},
  title = {{Habitat: A Runtime-Based Computational Performance Predictor for
    Deep Neural Network Training}},
  booktitle = {{Proceedings of the 2021 USENIX Annual Technical Conference
    (USENIX ATC'21)}},
  year = {2021},
}
Comments
  • I wonder what the meaning of varing kernel is.

    I wonder what the meaning of varing kernel is.

    Hi I am reading Habitat research paper.

    I wonder what the meaning of varing kernel is. I thought the GPU kernel is a collection of instructions that run in parallel, is that right?

    Can you give me an example of this phrase? 'some DNN operations are implemented using different GPU kernels on different GPUs '

    Thank you for taking the time to read.

    question 
    opened by Baek-sohyeon 6
  •  error: function cuptiProfilerBeginSession(&begin_session_params) failed with error CUPTI_ERROR_UNKNOWN

    error: function cuptiProfilerBeginSession(&begin_session_params) failed with error CUPTI_ERROR_UNKNOWN

    Hi @geoffxy,

    Great work here. I am quite interested in your project and try to reproduce from my side. Hower hit the error in the titel, I suspect that it may be caused by incompetible between CUPTI and NVIDIA driver version, I am wondering if could share you experiment setup here, mostly the host side, are you still using 18.04, what the nvidia driver version, did you use nvidia-docker2 or nvidia-container-runtime? what is your docker version?

    As mine, I am using 18.04 as host, driver 470.103.01, nvidia-docker2, docker 20.10.12.

    Thanks, Liang

    opened by liayan 3
  • How Habitat measures the execution time associated with the operation’s backward pass?

    How Habitat measures the execution time associated with the operation’s backward pass?

    Hi! Thanks for your perfect job.

    It's easy to understand to measure the execution time in the forward pass. But in the backward pass, how Habitat does? I think it is an undoubtedly different processor, right?

    @geoffxy Hope for your reply soon!

    question 
    opened by xiyiyia 2
  • Large Prediction Errors

    Large Prediction Errors

    Hi, I am reproducing the experiments in Habitat now. This is an interesting work and it's very convenient to run Habitat and process the results using the following two scripts.

    bash habitat/experiments/gather_raw_data.sh  <target_device>
    bash habitat/experiments/process_raw_data.sh
    

    Due to the limitation of GPU resources, I can not access all GPU models listed in the paper and only test it on V100, P100 and T4. But the prediction error is quite large, compared to that shown in the paper. You can check the results here.

    Basically, the setting I used follows habitat/docker/Dockerfile. Here are some of my experiment settings that may be different from yours:

    • CUDA driver version: 455.32.00,
    • I do not mount the user account on the host machine into the container

    So,

    1. Is there any hyper-parameter I need to tune to get a better prediction error ? 2.Can you share the cross-GPU prediction error between each pair of GPUs or just the output of habitat/experiments/process_raw_data.sh? Fig 3 in the paper only shows the results "averaged across all other “origin” GPUs".
    2. Will the setting differences listed above affect the prediction error ? Or any other possible reasons ?

    Thanks.

    question 
    opened by joapolarbear 2
  • CMake Error at CMakeLists.txt:22 (pybind11_add_module):

    CMake Error at CMakeLists.txt:22 (pybind11_add_module):

    when running "install-dev.sh", hit below error:

    CMake Error at CMakeLists.txt:22 (pybind11_add_module): Unknown CMake command "pybind11_add_module".

    -- Configuring incomplete, errors occurred!

    opened by liayan 1
  • CUPTI_ERROR_INSUFFICIENT_PRIVILEGES in container

    CUPTI_ERROR_INSUFFICIENT_PRIVILEGES in container

    The default configuration on my OS and current directions in README may lead to a CUPTI_ERROR_INSUFFICIENT_PRIVILEGES when using CUPTI inside the container.

    The example log is attached below:

    /home/ubuntu/home/habitat/cpp/src/cuda/cupti_tracer.cpp:120: error: function cuptiActivityRegisterCallbacks(cuptiBufferRequested, cuptiBufferCompleted) failed with error CUPTI_ERROR_INSUFFICIENT_PRIVILEGES.
    Traceback (most recent call last):
      File "run_experiment.py", line 246, in <module>
        main()
      File "run_experiment.py", line 238, in main
        run_dcgan_experiments(context)
      File "run_experiment.py", line 155, in run_dcgan_experiments
        context,
      File "run_experiment.py", line 85, in run_experiment_config
        threshold = compute_threshold(runnable, context)
      File "run_experiment.py", line 66, in compute_threshold
        runnable()
      File "run_experiment.py", line 150, in runnable
        iteration(*inputs)
      File "/home/ubuntu/home/habitat/experiments/dcgan/entry_point.py", line 41, in iteration
        netD.zero_grad()
      File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 1098, in zero_grad
        p.grad.detach_()
      File "/home/ubuntu/home/habitat/analyzer/habitat/tracking/operation.py", line 62, in hook
        kwargs,
      File "/home/ubuntu/home/habitat/analyzer/habitat/profiling/operation.py", line 45, in measure_operation
        record_kernels,
      File "/home/ubuntu/home/habitat/analyzer/habitat/profiling/operation.py", line 164, in _to_run_time_measurement
        if record_kernels else []
      File "/home/ubuntu/home/habitat/analyzer/habitat/profiling/kernel.py", line 34, in measure_kernels
        self._measure_kernels_raw(runnable, fname)
      File "/home/ubuntu/home/habitat/analyzer/habitat/profiling/kernel.py", line 48, in _measure_kernels_raw
        time_kernels = hc.profile(runnable)
    RuntimeError: CUPTI_ERROR_INSUFFICIENT_PRIVILEGES
    

    My solution: Adding options nvidia "NVreg_RestrictProfilingToAdminUsers=0" to /etc/modprobe.d/nvidia-kernel-common.conf and reboot.

    Ref:

    • https://developer.nvidia.com/nvidia-development-tools-solutions-err_nvgpuctrperm-permission-issue-performance-counters
    • https://github.com/tensorflow/tensorflow/issues/35860#issuecomment-585436324
    opened by yzs981130 1
  • Fail to build the image

    Fail to build the image

    Hi, I am following the steps here to reproduce habitat. When running setup.sh to build the image, the following error occurs

    Step 14/19 : RUN gpg --keyserver ha.pool.sks-keyservers.net --recv-keys B42F6819007F00F88E364FD4036A9C25BF357DD4
    ---> Running in d42ae3b13a05
    gpg: WARNING: unsafe permissions on homedir '/root/.gnupg'
    gpg: keybox '/root/.gnupg/pubring.kbx' created
    gpg: keyserver receive failed: No name
    The command '/bin/sh -c gpg --keyserver ha.pool.sks-keyservers.net --recv-keys B42F6819007F00F88E364FD4036A9C25BF357DD4' returned a non-zero code: 2
    

    Does it mean the keyserver ha.pool.sks-keyservers.net is not accessible now?

    I wonder whether it is necessary to duplicate the user account on the host machine into the container. With a root account in the container, I can access everything mounted from the host machine. What problem does it cause?

    Looking forward to your reply. Thanks.

    opened by joapolarbear 1
  • Fix format specifier for size_t

    Fix format specifier for size_t

    https://stackoverflow.com/questions/2524611/how-can-one-print-a-size-t-variable-portably-using-the-printf-family

    Signed-off-by: Kiruya Momochi [email protected]

    opened by KiruyaMomochi 0
  • Broken pillow for torchvision in Dockerfile causes docker build failed

    Broken pillow for torchvision in Dockerfile causes docker build failed

    Currently, pip3 install torchvision==0.5.0 should fail due to the broken dependency of pillow, shown in the following CI building process:

    https://github.com/yzs-lab/habitat/runs/4311964953?check_suite_focus=true#step:3:915

    Corresponding logs are attached below:

    The headers or library files could not be found for zlib,
        a required dependency when compiling Pillow from source.
        
        Please see the install instructions at:
           https://pillow.readthedocs.io/en/latest/installation.html
        
        Traceback (most recent call last):
          File "/tmp/pip-build-c0iq5ua_/pillow/setup.py", line 1024, in <module>
            zip_safe=not (debug_build() or PLATFORM_MINGW),
          File "/usr/lib/python3/dist-packages/setuptools/__init__.py", line 129, in setup
            return distutils.core.setup(**attrs)
          File "/usr/lib/python3.6/distutils/core.py", line 148, in setup
            dist.run_commands()
          File "/usr/lib/python3.6/distutils/dist.py", line 955, in run_commands
            self.run_command(cmd)
          File "/usr/lib/python3.6/distutils/dist.py", line 974, in run_command
            cmd_obj.run()
          File "/usr/lib/python3/dist-packages/setuptools/command/install.py", line 61, in run
            return orig.install.run(self)
          File "/usr/lib/python3.6/distutils/command/install.py", line 589, in run
            self.run_command('build')
          File "/usr/lib/python3.6/distutils/cmd.py", line 313, in run_command
            self.distribution.run_command(command)
          File "/usr/lib/python3.6/distutils/dist.py", line 974, in run_command
            cmd_obj.run()
          File "/usr/lib/python3.6/distutils/command/build.py", line 135, in run
            self.run_command(cmd_name)
          File "/usr/lib/python3.6/distutils/cmd.py", line 313, in run_command
            self.distribution.run_command(command)
          File "/usr/lib/python3.6/distutils/dist.py", line 974, in run_command
            cmd_obj.run()
          File "/usr/lib/python3/dist-packages/setuptools/command/build_ext.py", line 78, in run
            _build_ext.run(self)
          File "/usr/lib/python3.6/distutils/command/build_ext.py", line 339, in run
            self.build_extensions()
          File "/tmp/pip-build-c0iq5ua_/pillow/setup.py", line 790, in build_extensions
            raise RequiredDependencyException(f)
        __main__.RequiredDependencyException: zlib
        
        During handling of the above exception, another exception occurred:
        
        Traceback (most recent call last):
          File "<string>", line 1, in <module>
          File "/tmp/pip-build-c0iq5ua_/pillow/setup.py", line 1037, in <module>
            raise RequiredDependencyException(msg)
        __main__.RequiredDependencyException:
        
        The headers or library files could not be found for zlib,
        a required dependency when compiling Pillow from source.
        
        Please see the install instructions at:
           https://pillow.readthedocs.io/en/latest/installation.html
        
        
        
        ----------------------------------------
    Command "/usr/bin/python3 -u -c "import setuptools, tokenize;__file__='/tmp/pip-build-c0iq5ua_/pillow/setup.py';f=getattr(tokenize, 'open', open)(__file__);code=f.read().replace('\r\n', '\n');f.close();exec(compile(code, __file__, 'exec'))" install --record /tmp/pip-8eakyb7g-record/install-record.txt --single-version-externally-managed --compile" failed with error code 1 in /tmp/pip-build-c0iq5ua_/pillow/
    The command '/bin/sh -c pip3 install   torch==1.4.0   torchvision==0.5.0   pandas==1.1.2   tqdm==4.49.0' returned a non-zero code: 1
    
    opened by yzs981130 0
Releases(v1.0.0)
  • v1.0.0(Jun 1, 2021)

    This release is the first feature release of Habitat.

    Habitat is a tool that predicts a deep neural network's training iteration execution time on a given GPU. To learn more about how Habitat works, please see our research paper.

    Source code(tar.gz)
    Source code(zip)
Owner
Geoffrey Yu
Computer Science PhD Student at MIT | Software Engineering '18 @uWaterloo
Geoffrey Yu
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1)Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
Deep Learning Slide Captcha

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 55 Jan 02, 2023
The official repo for OC-SORT: Observation-Centric SORT on video Multi-Object Tracking. OC-SORT is simple, online and robust to occlusion/non-linear motion.

OC-SORT Observation-Centric SORT (OC-SORT) is a pure motion-model-based multi-object tracker. It aims to improve tracking robustness in crowded scenes

Jinkun Cao 325 Jan 05, 2023
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022