easyopt is a super simple yet super powerful optuna-based Hyperparameters Optimization Framework that requires no coding.

Overview

easyopt

easyopt is a super simple yet super powerful optuna-based Hyperparameters Optimization Framework that requires no coding.

Features

  • YAML Configuration
  • Distributed Parallel Optimization
  • Experiments Monitoring and Crash Recovering
  • Experiments Replicas
  • Real Time Pruning
  • A wide variety of sampling strategies
    • Tree-structured Parzen Estimator
    • CMA-ES
    • Grid Search
    • Random Search
  • A wide variety of pruning strategies
    • Asynchronous Successive Halving Pruning
    • Hyperband Pruning
    • Median Pruning
    • Threshold Pruning
  • A wide variety of DBMSs
    • Redis
    • SQLite
    • PostgreSQL
    • MySQL
    • Oracle
    • And many more

Installation

To install easyopt just type:

pip install easyopt

Example

easyopt expects that hyperparameters are passed using the command line arguments.

For example this problem has two hyperparameters x and y

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("--x", type=float, required=True)
parser.add_argument("--y", type=float, required=True)

args = parser.parse_args()

def objective(x, y):
    return x**2 + y**2

F = objective(args.x ,args.y)

To integrate easyopt you just have to

  • import easyopt
  • Add easyopt.objective(...) to report the experiment objective function value

The above code becomes:

import argparse
import easyopt

parser = argparse.ArgumentParser()

parser.add_argument("--x", type=float, required=True)
parser.add_argument("--y", type=float, required=True)

args = parser.parse_args()

def objective(x, y):
    return x**2 + y**2

F = objective(args.x ,args.y)
easyopt.objective(F)

Next you have to create the easyopt.yml to define the problem search space, sampler, pruner, storage, etc.

command: python problem.py {args}
storage: sqlite:////tmp/easyopt-toy-problem.db
sampler: TPESampler
parameters:
  x:
    distribution: uniform
    low: -10
    high: 10
  y:
    distribution: uniform
    low: -10
    high: 10

You can find the compete list of distributions here (all the suggest_* functions)

Finally you have to create a study

easyopt create test-study

And run as many agents as you want

easyopt agent test-study

After a while the hyperparameter optimization will finish

Trial 0 finished with value: 90.0401543850028 and parameters: {'x': 5.552902529323713, 'y': 7.694506344453366}. Best is trial 0 with value: 90.0401543850028.
Trial 1 finished with value: 53.38635524683359 and parameters: {'x': 0.26609756303111, 'y': 7.301749607716118}. Best is trial 1 with value: 53.38635524683359.
Trial 2 finished with value: 64.41207387363161 and parameters: {'x': 7.706366704967074, 'y': 2.2414250115064167}. Best is trial 1 with value: 53.38635524683359.
...
...
Trial 53 finished with value: 0.5326245807950265 and parameters: {'x': -0.26584110075742917, 'y': 0.6796713102251005}. Best is trial 35 with value: 0.11134607529340049.
Trial 54 finished with value: 8.570230212116037 and parameters: {'x': 2.8425893061307295, 'y': 0.6999401751487438}. Best is trial 35 with value: 0.11134607529340049.
Trial 55 finished with value: 96.69479467451664 and parameters: {'x': -0.3606041968175481, 'y': -9.826736960342137}. Best is trial 35 with value: 0.11134607529340049.

YAML Structure

The YAML configuration file is structured as follows

command: 
storage: 
   
sampler: 
   
pruner: 
   
direction: 
   
replicas: 
   
parameters:
  parameter-1:
    distribution: 
   
    
   : 
   
    
   : 
   
    ...
  ...
  • command: the command to execute to run the experiment.
    • {args} will be expanded to --parameter-1=value-1 --parameter-2=value-2
    • {name} will be expanded to the study name
  • storage: the storage to use for the study. A full list of storages is available here
  • sampler: the sampler to use. The full list of samplers is available here
  • pruner: the pruner to use. The full list of pruners is available here
  • direction: can be minimize or maximize (default: minimize)
  • replicas: the number of replicas to run for the same experiment (the experiment result is the average). (default: 1)
  • parameters: the parameters to optimize
    • for each parameter have to specify
      • distribution the distribution to use. The full list of distributions is available here (all the suggest_* functions)
      • arg: value
        • Arguments of the distribution. The arguments documentation is available here

CLI Interface

easyopt offer two CLI commands:

  • create to create a study using the easyopt.yml file or the one specified with --config
  • agent to run the agent for

LIB Interface

When importing easyopt you can use three functions:

  • easyopt.objective(value) to report the final objective function value of the experiment
  • easyopt.report(value) to report the current objective function value of the experiment (used by the pruner)
  • easyopt.should_prune() it returns True if the pruner thinks that the run should be pruned

Examples

You can find some examples here

Contributions and license

The code is released as Free Software under the GNU/GPLv3 license. Copying, adapting and republishing it is not only allowed but also encouraged.

For any further question feel free to reach me at [email protected] or on Telegram @galatolo

Owner
Federico Galatolo
PhD Student @ University of Pisa
Federico Galatolo
A microservice written in Python detecting nudity in images/videos

py-nudec py-nudec (python nude detector) is a microservice, which scans all the images and videos from the multipart/form-data request payload and sen

Michael Grigoryan 8 Jul 09, 2022
Flask + Docker + Nginx + Gunicorn + MySQL + Factory Method Pattern

This Flask project is reusable and also an example of how to merge Flask, Docker, Nginx, Gunicorn, MySQL, new: Flask-RESTX, Factory Method design pattern, and other optional dependencies such as Dyna

Facundo Padilla 19 Jul 23, 2022
Screaming-fast Python 3.5+ HTTP toolkit integrated with pipelining HTTP server based on uvloop and picohttpparser.

Japronto! There is no new project development happening at the moment, but it's not abandoned either. Pull requests and new maintainers are welcome. I

Paweł Piotr Przeradowski 8.6k Dec 29, 2022
APIFlask is a lightweight Python web API framework based on Flask and marshmallow-code projects

APIFlask APIFlask is a lightweight Python web API framework based on Flask and marshmallow-code projects. It's easy to use, highly customizable, ORM/O

Grey Li 705 Jan 04, 2023
An easy-to-use high-performance asynchronous web framework.

An easy-to-use high-performance asynchronous web framework.

Aber 264 Dec 31, 2022
Django Ninja - Fast Django REST Framework

Django Ninja is a web framework for building APIs with Django and Python 3.6+ type hints.

Vitaliy Kucheryaviy 3.8k Jan 02, 2023
You can use the mvc pattern in your flask application using this extension.

You can use the mvc pattern in your flask application using this extension. Installation Run the follow command to install mvc_flask: $ pip install mv

Marcus Pereira 37 Dec 17, 2022
🦍 The Cloud-Native API Gateway

Kong or Kong API Gateway is a cloud-native, platform-agnostic, scalable API Gateway distinguished for its high performance and extensibility via plugi

Kong 33.8k Jan 09, 2023
Mini Web Framework on MicroPython (Esp8266)

dupgee Dupgee is a mini web framework developed for micro-python(Tested on esp8266). Installation pip install dupgee Create Project dupgee create newp

ahmet kotan 38 Jul 25, 2022
Endpoints is a lightweight REST api framework written in python and used in multiple production systems that handle millions of requests daily.

Endpoints Quickest API builder in the West! Endpoints is a lightweight REST api framework written in python and used in multiple production systems th

Jay Marcyes 30 Mar 05, 2022
Official mirror of https://gitlab.com/pgjones/quart

Quart Quart is an async Python web microframework. Using Quart you can, render and serve HTML templates, write (RESTful) JSON APIs, serve WebSockets,

Phil Jones 2 Oct 05, 2022
Fast, asynchronous and elegant Python web framework.

Warning: This project is being completely re-written. If you're curious about the progress, reach me on Slack. Vibora is a fast, asynchronous and eleg

vibora.io 5.7k Jan 08, 2023
Web-frameworks-benchmark

Web-frameworks-benchmark

Nickolay Samedov 4 May 13, 2021
Distribution Analyser is a Web App that allows you to interactively explore continuous distributions from SciPy and fit distribution(s) to your data.

Distribution Analyser Distribution Analyser is a Web App that allows you to interactively explore continuous distributions from SciPy and fit distribu

Robert Dzudzar 46 Nov 08, 2022
The Web framework for perfectionists with deadlines.

Django Django is a high-level Python Web framework that encourages rapid development and clean, pragmatic design. Thanks for checking it out. All docu

Django 67.9k Dec 29, 2022
Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed.

Tornado Web Server Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed. By using non-blocking ne

20.9k Jan 01, 2023
Loan qualifier app - Loan Qualifier Application Built With Python

Loan Qualifier Application This program is designed to automate the discovery pr

Phil Hills 1 Jan 04, 2022
Quiz Web App with Flask and MongoDB as the Databases

quiz-app Quiz Web Application made with flask and mongodb as the Databases Before you run this application, change the inside MONGODB_URI ( in config.

gibran abdillah 7 Dec 14, 2022
Asita is a web application framework for python.

What is Asita ? Asita is a web application framework for python. It is designed to be easy to use and be more easy for javascript users to use python

Mattéo 4 Nov 16, 2021
Fast⚡, simple and light💡weight ASGI micro🔬 web🌏-framework for Python🐍.

NanoASGI Asynchronous Python Web Framework NanoASGI is a fast ⚡ , simple and light 💡 weight ASGI micro 🔬 web 🌏 -framework for Python 🐍 . It is dis

Kavindu Santhusa 8 Jun 16, 2022