Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

Overview

MixFaceNets

This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks.

(Accepted in IJCB2021) https://ieeexplore.ieee.org/abstract/document/9484374

Paper Arxiv

Model MFLOPs Params (M) LFW% AgeDB-30% IJB-B( TAR at FAR1e–6) IJB-C( TAR at FAR1e–6) Pretrained model
MixFaceNet-M 626.1 3.95 99.68 97.05 91.55 93.42 pretrained-mode
ShuffleMixFaceNet-M 626.1 3.95 99.60 96.98 91.47 93.5 pretrained-mode
MixFaceNet-S 451.7 3.07 99.60 96.63 90.17 92.30 pretrained-mode
ShuffleMixFaceNet-S 451.7 3.07 99.58 97.05 90.94 93.08 pretrained-mode
MixFaceNet-XS 161.9 1.04 99.60 95.85 88.48 90.73 pretrained-mode
ShuffleMixFaceNet-XS 161.9 1.04 99.53 95.62 87.86 90.43 pretrained-mode

FLOPs vs. performance on LFW (accuracy), AgeDB-30 (accuracy), MegaFace (TAR at FAR1e-6), IJB-B (TAR at FAR1e-4), IJB-C (TAR at FAR1e-4) and refined version of MegaFace, noted as MegaFace (R), (TAR at FAR1e-6). Our MixFaceNet models are highlighted with triangle marker and red edge color.

LFW LFW

AgeDb-30 LFW

MegaFace LFW

MegaFace(R) LFW

IJB-B LFW

IJB-C LFW

If you find MixFaceNets useful in your research, please cite the following paper:

Citation

@INPROCEEDINGS{9484374,
  author={Boutros, Fadi and Damer, Naser and Fang, Meiling and Kirchbuchner, Florian and Kuijper, Arjan},
  booktitle={2021 IEEE International Joint Conference on Biometrics (IJCB)}, 
  title={MixFaceNets: Extremely Efficient Face Recognition Networks}, 
  year={2021},
  volume={},
  number={},
  pages={1-8},
  doi={10.1109/IJCB52358.2021.9484374}}


The model is trained with ArcFace loss using Partial-FC algorithms. If you train the MixfaceNets with ArcFace and Partial-FC, please follow their distribution licenses.

Citation

@inproceedings{deng2019arcface,
  title={Arcface: Additive angular margin loss for deep face recognition},
  author={Deng, Jiankang and Guo, Jia and Xue, Niannan and Zafeiriou, Stefanos},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={4690--4699},
  year={2019}
}
@inproceedings{an2020partical_fc,
  title={Partial FC: Training 10 Million Identities on a Single Machine},
  author={An, Xiang and Zhu, Xuhan and Xiao, Yang and Wu, Lan and Zhang, Ming and Gao, Yuan and Qin, Bin and
  Zhang, Debing and Fu Ying},
  booktitle={Arxiv 2010.05222},
  year={2020}
}
Owner
Fadi Boutros
Fadi Boutros
All-in-one Docker container that allows a user to explore Nautobot in a lab environment.

Nautobot Lab This container is not for production use! Nautobot Lab is an all-in-one Docker container that allows a user to quickly get an instance of

Nautobot 29 Sep 16, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
Deep Reinforced Attention Regression for Partial Sketch Based Image Retrieval.

DARP-SBIR Intro This repository contains the source code implementation for ICDM submission paper Deep Reinforced Attention Regression for Partial Ske

2 Jan 09, 2022
This repository accompanies the ACM TOIS paper "What can I cook with these ingredients?" - Understanding cooking-related information needs in conversational search

In this repository you find data that has been gathered when conducting in-situ experiments in a conversational cooking setting. These data include tr

6 Sep 22, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021) Hang Zhou, Yasheng Sun, Wayne Wu, Chen Cha

Hang_Zhou 628 Dec 28, 2022
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
A Closer Look at Reference Learning for Fourier Phase Retrieval

A Closer Look at Reference Learning for Fourier Phase Retrieval This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inver

Tobias Uelwer 1 Oct 28, 2021
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023