Levenshtein and Hamming distance computation

Overview

distance - Utilities for comparing sequences

This package provides helpers for computing similarities between arbitrary sequences. Included metrics are Levenshtein, Hamming, Jaccard, and Sorensen distance, plus some bonuses. All distance computations are implemented in pure Python, and most of them are also implemented in C.

Installation

If you don't want or need to use the C extension, just unpack the archive and run, as root:

# python setup.py install

For the C extension to work, you need the Python source files, and a C compiler (typically Microsoft Visual C++ 2010 on Windows, and GCC on Mac and Linux). On a Debian-like system, you can get all of these with:

# apt-get install gcc pythonX.X-dev

where X.X is the number of your Python version.

Then you should type:

# python setup.py install --with-c

Note the use of the --with-c switch.

Usage

A common use case for this module is to compare single words for similarity:

>>> distance.levenshtein("lenvestein", "levenshtein")
3
>>> distance.hamming("hamming", "hamning")
1

If there is not a one-to-one mapping between sounds and glyphs in your language, or if you want to compare not glyphs, but syllables or phonems, you can pass in tuples of characters:

>>> t1 = ("de", "ci", "si", "ve")
>>> t2 = ("de", "ri", "si", "ve")
>>> distance.levenshtein(t1, t2)
1

Comparing lists of strings can also be useful for computing similarities between sentences, paragraphs, etc.:

>>> sent1 = ['the', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog']
>>> sent2 = ['the', 'lazy', 'fox', 'jumps', 'over', 'the', 'crazy', 'dog']
>>> distance.levenshtein(sent1, sent2)
3

Hamming and Levenshtein distance can be normalized, so that the results of several distance measures can be meaningfully compared. Two strategies are available for Levenshtein: either the length of the shortest alignment between the sequences is taken as factor, or the length of the longer one. Example uses:

>>> distance.hamming("fat", "cat", normalized=True)
0.3333333333333333
>>> distance.nlevenshtein("abc", "acd", method=1)  # shortest alignment
0.6666666666666666
>>> distance.nlevenshtein("abc", "acd", method=2)  # longest alignment
0.5

jaccard and sorensen return a normalized value per default:

>>> distance.sorensen("decide", "resize")
0.5555555555555556
>>> distance.jaccard("decide", "resize")
0.7142857142857143

As for the bonuses, there is a fast_comp function, which computes the distance between two strings up to a value of 2 included. If the distance between the strings is higher than that, -1 is returned. This function is of limited use, but on the other hand it is quite faster than levenshtein. There is also a lcsubstrings function which can be used to find the longest common substrings in two sequences.

Finally, two convenience iterators ilevenshtein and ifast_comp are provided, which are intended to be used for filtering from a long list of sequences the ones that are close to a reference one. They both return a series of tuples (distance, sequence). Example:

>>> tokens = ["fo", "bar", "foob", "foo", "fooba", "foobar"]
>>> sorted(distance.ifast_comp("foo", tokens))
[(0, 'foo'), (1, 'fo'), (1, 'foob'), (2, 'fooba')]
>>> sorted(distance.ilevenshtein("foo", tokens, max_dist=1))
[(0, 'foo'), (1, 'fo'), (1, 'foob')]

ifast_comp is particularly efficient, and can handle 1 million tokens without a problem.

For more informations, see the functions documentation (help(funcname)).

Have fun!

Changelog

20/11/13:

  • Switched back to using the to-be-deprecated Python unicode api. Good news is that this makes the C extension compatible with Python 2.7+, and that distance computations on unicode strings is now much faster.
  • Added a C version of lcsubstrings.
  • Added a new method for computing normalized Levenshtein distance.
  • Added some tests.

12/11/13: Expanded fast_comp (formerly quick_levenshtein) so that it can handle transpositions. Fixed variable interversions in (C) levenshtein which produced sometimes strange results.

10/11/13: Added quick_levenshtein and iquick_levenshtein.

05/11/13: Added Sorensen and Jaccard metrics, fixed memory issue in Levenshtein.

🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Hugging Face 77.1k Dec 31, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
基于pytorch_rnn的古诗词生成

pytorch_peot_rnn 基于pytorch_rnn的古诗词生成 说明 config.py里面含有训练、测试、预测的参数,更改后运行: python main.py 预测结果 if config.do_predict: result = trainer.generate('丽日照残春')

西西嘛呦 3 May 26, 2022
Code repository for "It's About Time: Analog clock Reading in the Wild"

it's about time Code repository for "It's About Time: Analog clock Reading in the Wild" Packages required: pytorch (used 1.9, any reasonable version s

52 Nov 10, 2022
xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.

Description xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building bl

Facebook Research 2.3k Jan 08, 2023
Persian Bert For Long-Range Sequences

ParsBigBird: Persian Bert For Long-Range Sequences The Bert and ParsBert algorithms can handle texts with token lengths of up to 512, however, many ta

Sajjad Ayoubi 63 Dec 14, 2022
Model parallel transformers in JAX and Haiku

Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu

Ben Wang 4.9k Jan 04, 2023
Quick insights from Zoom meeting transcripts using Graph + NLP

Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this

Advit Deepak 7 Sep 17, 2022
Code for papers "Generation-Augmented Retrieval for Open-Domain Question Answering" and "Reader-Guided Passage Reranking for Open-Domain Question Answering", ACL 2021

This repo provides the code of the following papers: (GAR) "Generation-Augmented Retrieval for Open-domain Question Answering", ACL 2021 (RIDER) "Read

morning 49 Dec 26, 2022
MASS: Masked Sequence to Sequence Pre-training for Language Generation

MASS: Masked Sequence to Sequence Pre-training for Language Generation

Microsoft 1.1k Dec 17, 2022
AI and Machine Learning workflows on Anthos Bare Metal.

Hybrid and Sovereign AI on Anthos Bare Metal Table of Contents Overview Terraform as IaC Substrate ABM Cluster on GCE using Terraform TensorFlow ResNe

Google Cloud Platform 8 Nov 26, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
GooAQ 🥑 : Google Answers to Google Questions!

This repository contains the code/data accompanying our recent work on long-form question answering.

AI2 112 Nov 06, 2022
Sploitus - Command line search tool for sploitus.com. Think searchsploit, but with more POCs

Sploitus Command line search tool for sploitus.com. Think searchsploit, but with

watchdog2000 5 Mar 07, 2022
Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form.

Neural G2P to portuguese language Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written for

fluz 11 Nov 16, 2022
Enterprise Scale NLP with Hugging Face & SageMaker Workshop series

Workshop: Enterprise-Scale NLP with Hugging Face & Amazon SageMaker Earlier this year we announced a strategic collaboration with Amazon to make it ea

Philipp Schmid 161 Dec 16, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022
Scene Text Retrieval via Joint Text Detection and Similarity Learning

This is the code of "Scene Text Retrieval via Joint Text Detection and Similarity Learning". For more details, please refer to our CVPR2021 paper.

79 Nov 29, 2022
Lyrics generation with GPT2-based Transformer

HuggingArtists - Train a model to generate lyrics Create AI-Artist in just 5 minutes! 🚀 Run the demo notebook to train 🚀 Run the GUI demo to test Di

Aleksey Korshuk 65 Dec 19, 2022