DLFlow is a deep learning framework.

Overview

contributions license python

DLFlow - A Deep Learning WorkFlow

DLFlow概述

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

功能支持

配置驱动: DLFlow通过配置驱动,修改配置可以快速更换特征、模型超参数、任务流程等等,极大提高工作效率。

模块化结构: 任务和模型以插件形式存在,便于使用和开发,用户可以可以轻地将自定义任务和模型注册到框架内使用。

任务自组织: 通过内置的Workflow框架,根据任务的产出标记自动解决任务依赖,轻松构建深度学习pipeline。

最佳实践: 融入滴滴用户画像团队深度学习离线任务的最佳实践,有效应对离线生产中的多种问题。将Tensorflow和Spark进行合理结合,更适合离线深度学习任务。

快速开始

环境准备

首先请确保环境中已经安装和配置Hadoop和Spark,并设置好了基本的环境变量。

  • Tensorflow访问HDFS

为了能够使用让Tensorflow访问HDFS,需要确保如下环境变量生效:

# 确保libjvm.so被添加到LD_LIBRARY_PATH
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${JAVA_HOME}/jre/lib/amd64/server

# 确保hadoop jars被添加到CLASSPATH
export CLASSPATH=${CLASSPATH}:$(hadoop classpath --glob)

关于Tensorflow访问HDFS更多内容请参见 TensorFlow on Hadoop

  • Spark读写TFReocrds
# Clone tensorflow/ecosystem项目
git clone https://github.com/tensorflow/ecosystem.git

cd ecosystem/spark/spark-tensorflow-connector/

# 构建spark-tensorflow-connector
mvn versions:set -DnewVersion=1.14.0
mvn clean install

项目构建后生成 target/spark-tensorflow-connector_2.11-1.14.0.jar,后续需要确保该jar被添加到 spark.jars 中。 关于Spark读写TFRecoreds更多内容请参见 spark-tensorflow-connector

安装

通过pip安装:

pip install dlflow

通过源代码安装:

git clone  https://github.com/didi/dlflow.git
cd dlflow
python setup.py install

使用

  • 配置文件

运行配置可参考 conf 目录中的配置。 关于配置详情请参考 配置说明

  • 以模块运行
python -m dlflow.main --config <CONFIGURATION FILE>.conf
  • 以脚本运行

确保python环境的 bin 目录已经被添加到环境变量 PATH

export PATH=$PATH:/usr/local/python/bin

之后通过如下命令运行

dlflow --config .conf

更详细的使用参见 使用说明

预定义任务

预定义任务 描述
Merge 特征融合任务,请参见 特征融合
Encode 解析原始特征,对特征进行编码和预处理,生成能够直接输入模型的特征
Train 模型训练任务
Evaluate 模型评估任务
Predict 模型预测任务,使用Spark进行分布式预测,具备处理大规模数据能力

手册目录

技术方案

DLFlow整体架构

整体架构

DLFLow pipeline

Pipeline

Contributing

欢迎使用并参与到本项目的建设中,详细内容请参见 Contribution Guide

License

DLFlow 基于Apache-2.0协议进行分发和使用,更多信息参见 LICENSE

Owner
DiDi
滴滴出行
DiDi
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
Official PyTorch implementation of GDWCT (CVPR 2019, oral)

This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-

WonwoongCho 135 Dec 02, 2022
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any

yueliu1999 109 Dec 23, 2022
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
Can we learn gradients by Hamiltonian Neural Networks?

Can we learn gradients by Hamiltonian Neural Networks? This project was carried out as part of the Optimization for Machine Learning course (CS-439) a

2 Aug 22, 2022
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
Styled Handwritten Text Generation with Transformers (ICCV 21)

⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 984 Dec 16, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022