Simple encryption-at-rest with key rotation support for Python.

Related tags

Cryptographykeyringpy
Overview

keyring

Simple encryption-at-rest with key rotation support for Python.

keyring: Simple encryption-at-rest with key rotation support for Python.

N.B.: keyring is not for encrypting passwords--for that, you should use something like bcrypt. It's meant for encrypting sensitive data you will need to access in plain text (e.g. storing OAuth token from users). Passwords do not fall in that category.

This package is completely independent from any storage mechanisms; the goal is providing a few functions that could be easily integrated with any ORM.

Installation

Add package to your requirements.txt or:

pip install keyring

Usage

Encryption

By default, AES-128-CBC is the algorithm used for encryption. This algorithm uses 16 bytes keys, but you're required to use a key that's double the size because half of that keys will be used to generate the HMAC. The first 16 bytes will be used as the encryption key, and the last 16 bytes will be used to generate the HMAC.

Using random data base64-encoded is the recommended way. You can easily generate keys by using the following command:

$ dd if=/dev/urandom bs=32 count=1 2>/dev/null | openssl base64 -A
qUjOJFgZsZbTICsN0TMkKqUvSgObYxnkHDsazTqE5tM=

Include the result of this command in the value section of the key description in the keyring. Half this key is used for encryption, and half for the HMAC.

Key size

The key size depends on the algorithm being used. The key size should be double the size as half of it is used for HMAC computation.

  • aes-128-cbc: 16 bytes (encryption) + 16 bytes (HMAC).
  • aes-192-cbc: 24 bytes (encryption) + 24 bytes (HMAC).
  • aes-256-cbc: 32 bytes (encryption) + 32 bytes (HMAC).

About the encrypted message

Initialization vectors (IV) should be unpredictable and unique; ideally, they will be cryptographically random. They do not have to be secret: IVs are typically just added to ciphertext messages unencrypted. It may sound contradictory that something has to be unpredictable and unique, but does not have to be secret; it is important to remember that an attacker must not be able to predict ahead of time what a given IV will be.

With that in mind, keyring uses base64(hmac(unencrypted iv + encrypted message) + unencrypted iv + encrypted message) as the final message. If you're planning to migrate from other encryption mechanisms or read encrypted values from the database without using keyring, make sure you account for this. The HMAC is 32-bytes long and the IV is 16-bytes long.

Keyring

Keys are managed through a keyring--a short python Dictionary describing your encryption keys. The keyring must be a Dictionary object mapping numeric ids of the keys to the key values. A keyring must have at least one key. For example:

{
  "1": "uDiMcWVNTuz//naQ88sOcN+E40CyBRGzGTT7OkoBS6M=",
  "2": "VN8UXRVMNbIh9FWEFVde0q7GUA1SGOie1+FgAKlNYHc="
}

The id is used to track which key encrypted which piece of data; a key with a larger id is assumed to be newer. The value is the actual bytes of the encryption key.

Key Rotation

With keyring you can have multiple encryption keys at once and key rotation is fairly straightforward: if you add a key to the keyring with a higher id than any other key, that key will automatically be used for encryption when objects are either created or updated. Any keys that are no longer in use can be safely removed from the keyring.

It's extremely important that you save the keyring id returned by encrypt(); otherwise, you may not be able to decrypt values (you can always decrypt values if you still possess all encryption keys).

If you're using keyring to encrypt database columns, it's recommended to use a separated keyring for each table you're planning to encrypt: this allows an easier key rotation in case you need (e.g. key leaking).

N.B.: Keys are hardcoded on these examples, but you shouldn't do it on your code base. You can retrieve keyring from environment variables if you're deploying to Heroku and alike, or deploy a JSON file with your configuration management software (e.g. Ansible, Puppet, Chef, etc).

Basic usage of keyring

🔒 Vco48O95YC4jqj44MheY8zFO2NLMPp/KILiUGbKxHvAwLd2/AN+zUG650CJzogttqnF1cGMFb//Idg4+bXoRMQ== #=> 🔑 1 #=> 🔎 c39ec9729dbacd45cecd5ea9a60b15b50b0cc857 # STEP 2: Decrypted message using encryption key defined by keyring id. decrypted = encryptor.decrypt(encrypted, keyringId) print(f'✉️ {decrypted}') #=> ✉️ super secret">
from keyring import Keyring;

keys = { '1': "uDiMcWVNTuz//naQ88sOcN+E40CyBRGzGTT7OkoBS6M=" }
encryptor = Keyring(keys, { "digest_salt": "salt-n-pepper" })

# STEP 1: Encrypt message using latest encryption key.
encrypted, keyringId, digest = encryptor.encrypt("super secret")
print(f'🔒 {encrypted}')
print(f'🔑 {keyringId}')
print(f'🔎 {digest}')
#=> 🔒 Vco48O95YC4jqj44MheY8zFO2NLMPp/KILiUGbKxHvAwLd2/AN+zUG650CJzogttqnF1cGMFb//Idg4+bXoRMQ== 
#=> 🔑 1
#=> 🔎 c39ec9729dbacd45cecd5ea9a60b15b50b0cc857

# STEP 2: Decrypted message using encryption key defined by keyring id.
decrypted = encryptor.decrypt(encrypted, keyringId)
print(f'✉️ {decrypted}')
#=> ✉️ super secret

Change encryption algorithm

You can choose between AES-128-CBC, AES-192-CBC and AES-256-CBC. By default, AES-128-CBC will be used.

To specify the encryption algorithm, set the encryption option. The following example uses AES-256-CBC.

", })">
from keyring import Keyring

keys = { "1": "uDiMcWVNTuz//naQ88sOcN+E40CyBRGzGTT7OkoBS6M=" }
encryptor = Keyring(keys, {
  "encryption": "aes-256-cbc",
  "digest_salt": "
   
    "
   ,
})

Exchange data with Ruby

If you use Ruby, you may be interested in https://github.com/fnando/attr_keyring, which is able to read and write messages using the same format.

Exchange data with Node.js

If you use Node.js, you may be interested in https://github.com/fnando/keyring-node, which is able to read and write messages using the same format.

Development

After checking out the repo, run pip install -r requirements.dev.txt to install dependencies. Then, run pytest to run the tests.

Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/dannluciano/keyring-python. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the Contributor Covenant code of conduct.

License

The gem is available as open source under the terms of the MIT License.

Icon

Icon made by Icongeek26 from Flaticon is licensed by Creative Commons BY 3.0.

Code of Conduct

Everyone interacting in the keyring project’s codebases, issue trackers, chat rooms and mailing lists is expected to follow the code of conduct.

Acknowledgments

Inspired:

Thanks to IFPI for pay my salary!

IFPI

Owner
Dann Luciano
Dann Luciano
Create and finder all address wallet bitcoin and check balance , transaction

BTCCrackWallet Create and finder all address wallet bitcoin and check balance , transaction bitcoin wallet generator generated address wallet , public

MMDRZA 11 Nov 26, 2022
In this repository there are two types of code files

encryption-decryption In this repository there are two types of code files Me Friend Code in the 'Me' file can use for encryption and Code in the 'Fri

Vicksura Dulhan Perera 1 Nov 22, 2021
Hide secret texts inside an image, optionally encrypt them with a password using AES-256.

Hide secret texts/messages inside an image. You can optionally encrypt your texts with a password using AES-256 before encoding into the image.

Teja Swaroop 97 Dec 29, 2022
An automated Risk Management Monitor Bot for ByBit cryptocurrencies exchange.

An automated Risk Management Monitor Bot for ByBit cryptocurrencies exchange that forces all open positions to adhere to a specific risk ratio, defined per asset. It supports USDT Perpetual, Inverse

Hadi Aladdin 25 Nov 27, 2022
This project aims to assist in the search for leaked passwords while maintaining a high level of privacy using the k-anonymity method.

To achieve this, the APIs of different services are used, sending only a part of the Hash of the password we want to check, for example, the first 5 characters.

Telefónica 36 Jul 06, 2022
This is a Sharding Simulator to study blockchain scalability

Sharding Simulator This is a Sharding Simulator to study blockchain scalability. How to run on Ubuntu First make sure you have the header file for Pyt

1 Jan 23, 2022
Amazing CryptoWAF was a CTF challenge for ALLES! CTF 2021

ctf-cryptowaf The AmazingCryptoWAF ™️ is used by the "noter" web app, to offer automagically military encryption for any user data. Even if an attacke

32 Jan 02, 2023
A simple Ethereum mining pool

A simple getWork pool for ethereum mining Payouts are still manual. TODO: write payouts when someone mines 10 blocks. Also, make the submit actually

93 Oct 05, 2022
SVSHI - Secure and Verified Smart Home Infrastructure

The SVSHI (Secure and Verified Smart Home Infrastructure) (pronounced like "sushi") project is a platform/runtime/toolchain for developing and running formally verified smart infrastructures, such as

Dependable Systems Laboratory 3 Oct 28, 2022
Generate simple encrypted messages!

Premio's Shift is a very simple text encryption, you can use it to send secret messages to your friends. Table of Content Table of Content How it work

Peterson Adami Candido 3 Aug 06, 2021
Tutela: an Ethereum and Tornado Cash Anonymity Tool

Tutela: an Ethereum and Tornado Cash Anonymity Tool The repo contains open-source code for Tutela, an anonymity tool for Ethereum and Tornado Cash use

TutelaLabs 96 Dec 05, 2022
That Hash will name that hash type! Identify MD5, SHA256 and 300+ other hashes Comes with

Call for translators! We're looking for translators to help translate this spec for everyone! Read this documentation in the following languages 한국어 中

All Contributors 6.8k Jan 05, 2023
A Docker image for plotting and farming the Chia™ cryptocurrency on one computer or across many.

An easy-to-use WebUI for crypto plotting and farming. Offers Plotman, MadMax, Chiadog, Bladebit, Farmr, and Forktools in a Docker container. Supports Chia, Cactus, Chives, Flax, Flora, HDDCoin, Maize

Guy Davis 328 Jan 01, 2023
The Qis|krypt⟩ is a software suite of protocols of quantum cryptography and quantum communications

The Qis|krypt⟩ is a software suite of protocols of quantum cryptography and quantum communications, as well, other protocols and algorithms, built using IBM’s open-source Software Development Kit for

Qiskrypt 14 Oct 31, 2022
Python based project to pull useful account statistics from the Algorand block chain.

PlanetWatchStats Python based project to pull useful account statistics from the Algorand block chain. Setup pip install -r requirements.txt Run pytho

M0x40 1 Jan 27, 2022
Aza this is a text encryption software

Aza text encryptor General info Aza this is a text encryption software Help command: python aza.py --help Examples python aza.py --text "Sample text h

ToxidWorm 1 Sep 10, 2022
Bit is Python's fastest Bitcoin library and was designed from the beginning to feel intuitive, be effortless to use, and have readable source code.

Bit is Python's fastest Bitcoin library and was designed from the beginning to feel intuitive, be effortless to use, and have readable source code.

Ofek Lev 1.1k Jan 02, 2023
Electrum - Lightweight Vertcoin client

Electrum - Lightweight Vertcoin client Electrum-VTC is a rebase of upstream Electrum and pulls in updates regularly. Donate VTC to support this work:

Vertcoin 4 Oct 14, 2022
Простой шифратор работающий по ключам.

deCryptor Что это такое? Простой шифратор работающий по ключам и без них. Как пользоваться? СМОТРЕТЬ ИЗОБРАЖЕНИЕ Разработчики Роман Слабицкий - написа

Romanin 2 May 31, 2022
DCAStack: an Automated Dollar Cost Averaging Bot for Your Crypto

Welcome to DCA Stack! An Automated Dollar Cost Averaging Bot For Your Crypto Web

0 Sep 03, 2022