Simple encryption-at-rest with key rotation support for Python.

Related tags

Cryptographykeyringpy
Overview

keyring

Simple encryption-at-rest with key rotation support for Python.

keyring: Simple encryption-at-rest with key rotation support for Python.

N.B.: keyring is not for encrypting passwords--for that, you should use something like bcrypt. It's meant for encrypting sensitive data you will need to access in plain text (e.g. storing OAuth token from users). Passwords do not fall in that category.

This package is completely independent from any storage mechanisms; the goal is providing a few functions that could be easily integrated with any ORM.

Installation

Add package to your requirements.txt or:

pip install keyring

Usage

Encryption

By default, AES-128-CBC is the algorithm used for encryption. This algorithm uses 16 bytes keys, but you're required to use a key that's double the size because half of that keys will be used to generate the HMAC. The first 16 bytes will be used as the encryption key, and the last 16 bytes will be used to generate the HMAC.

Using random data base64-encoded is the recommended way. You can easily generate keys by using the following command:

$ dd if=/dev/urandom bs=32 count=1 2>/dev/null | openssl base64 -A
qUjOJFgZsZbTICsN0TMkKqUvSgObYxnkHDsazTqE5tM=

Include the result of this command in the value section of the key description in the keyring. Half this key is used for encryption, and half for the HMAC.

Key size

The key size depends on the algorithm being used. The key size should be double the size as half of it is used for HMAC computation.

  • aes-128-cbc: 16 bytes (encryption) + 16 bytes (HMAC).
  • aes-192-cbc: 24 bytes (encryption) + 24 bytes (HMAC).
  • aes-256-cbc: 32 bytes (encryption) + 32 bytes (HMAC).

About the encrypted message

Initialization vectors (IV) should be unpredictable and unique; ideally, they will be cryptographically random. They do not have to be secret: IVs are typically just added to ciphertext messages unencrypted. It may sound contradictory that something has to be unpredictable and unique, but does not have to be secret; it is important to remember that an attacker must not be able to predict ahead of time what a given IV will be.

With that in mind, keyring uses base64(hmac(unencrypted iv + encrypted message) + unencrypted iv + encrypted message) as the final message. If you're planning to migrate from other encryption mechanisms or read encrypted values from the database without using keyring, make sure you account for this. The HMAC is 32-bytes long and the IV is 16-bytes long.

Keyring

Keys are managed through a keyring--a short python Dictionary describing your encryption keys. The keyring must be a Dictionary object mapping numeric ids of the keys to the key values. A keyring must have at least one key. For example:

{
  "1": "uDiMcWVNTuz//naQ88sOcN+E40CyBRGzGTT7OkoBS6M=",
  "2": "VN8UXRVMNbIh9FWEFVde0q7GUA1SGOie1+FgAKlNYHc="
}

The id is used to track which key encrypted which piece of data; a key with a larger id is assumed to be newer. The value is the actual bytes of the encryption key.

Key Rotation

With keyring you can have multiple encryption keys at once and key rotation is fairly straightforward: if you add a key to the keyring with a higher id than any other key, that key will automatically be used for encryption when objects are either created or updated. Any keys that are no longer in use can be safely removed from the keyring.

It's extremely important that you save the keyring id returned by encrypt(); otherwise, you may not be able to decrypt values (you can always decrypt values if you still possess all encryption keys).

If you're using keyring to encrypt database columns, it's recommended to use a separated keyring for each table you're planning to encrypt: this allows an easier key rotation in case you need (e.g. key leaking).

N.B.: Keys are hardcoded on these examples, but you shouldn't do it on your code base. You can retrieve keyring from environment variables if you're deploying to Heroku and alike, or deploy a JSON file with your configuration management software (e.g. Ansible, Puppet, Chef, etc).

Basic usage of keyring

πŸ”’ Vco48O95YC4jqj44MheY8zFO2NLMPp/KILiUGbKxHvAwLd2/AN+zUG650CJzogttqnF1cGMFb//Idg4+bXoRMQ== #=> πŸ”‘ 1 #=> πŸ”Ž c39ec9729dbacd45cecd5ea9a60b15b50b0cc857 # STEP 2: Decrypted message using encryption key defined by keyring id. decrypted = encryptor.decrypt(encrypted, keyringId) print(f'βœ‰οΈ {decrypted}') #=> βœ‰οΈ super secret">
from keyring import Keyring;

keys = { '1': "uDiMcWVNTuz//naQ88sOcN+E40CyBRGzGTT7OkoBS6M=" }
encryptor = Keyring(keys, { "digest_salt": "salt-n-pepper" })

# STEP 1: Encrypt message using latest encryption key.
encrypted, keyringId, digest = encryptor.encrypt("super secret")
print(f'πŸ”’ {encrypted}')
print(f'πŸ”‘ {keyringId}')
print(f'πŸ”Ž {digest}')
#=> πŸ”’ Vco48O95YC4jqj44MheY8zFO2NLMPp/KILiUGbKxHvAwLd2/AN+zUG650CJzogttqnF1cGMFb//Idg4+bXoRMQ== 
#=> πŸ”‘ 1
#=> πŸ”Ž c39ec9729dbacd45cecd5ea9a60b15b50b0cc857

# STEP 2: Decrypted message using encryption key defined by keyring id.
decrypted = encryptor.decrypt(encrypted, keyringId)
print(f'βœ‰οΈ {decrypted}')
#=> βœ‰οΈ super secret

Change encryption algorithm

You can choose between AES-128-CBC, AES-192-CBC and AES-256-CBC. By default, AES-128-CBC will be used.

To specify the encryption algorithm, set the encryption option. The following example uses AES-256-CBC.

", })">
from keyring import Keyring

keys = { "1": "uDiMcWVNTuz//naQ88sOcN+E40CyBRGzGTT7OkoBS6M=" }
encryptor = Keyring(keys, {
  "encryption": "aes-256-cbc",
  "digest_salt": "
   
    "
   ,
})

Exchange data with Ruby

If you use Ruby, you may be interested in https://github.com/fnando/attr_keyring, which is able to read and write messages using the same format.

Exchange data with Node.js

If you use Node.js, you may be interested in https://github.com/fnando/keyring-node, which is able to read and write messages using the same format.

Development

After checking out the repo, run pip install -r requirements.dev.txt to install dependencies. Then, run pytest to run the tests.

Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/dannluciano/keyring-python. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the Contributor Covenant code of conduct.

License

The gem is available as open source under the terms of the MIT License.

Icon

Icon made by Icongeek26 from Flaticon is licensed by Creative Commons BY 3.0.

Code of Conduct

Everyone interacting in the keyring project’s codebases, issue trackers, chat rooms and mailing lists is expected to follow the code of conduct.

Acknowledgments

Inspired:

Thanks to IFPI for pay my salary!

IFPI

Owner
Dann Luciano
Dann Luciano
PytoPrice is an automation program to fetch the latest price of a cryptocurrency of your choice at a user-customizable update interval.

PyToPrice (Python Crypto Price) PytoPrice is an automation program to fetch the latest price of a cryptocurrency of your choice at a user-customizable

Peter 1 Jun 16, 2022
Bitcoin & Lightning Container Manager for facilitating development tools

Torch-cli Bitcoin & Lightning Container Manager for facilitating development too

Gray Finance 3 Aug 22, 2022
This folder contains all the assignment of the course COL759 : Cryptography & Computer Security

Cryptography This folder contains all the assignment of the course COL759 : "Cryptography & Computer Security" Assignment 1 : Encyption, Decryption &

0 Jan 21, 2022
Technical_indicators_cryptos - Using technical indicators to find optimal trading strategies to deploy onto trading bot.

technical_indicators_cryptos Using technical indicators to find optimal trading strategies to deploy onto trading bot. In the Jup Notebook you wil

Van 4 Jul 03, 2022
Ceres is a combine harvester designed to harvest plots for Chia blockchain and its forks using proof-of-space-and-time(PoST) consensus algorithm.

Ceres Combine-Harvester Ceres is a combine harvester designed to harvest plots for Chia blockchain and its forks using proof-of-space-and-time(PoST) c

38 Nov 14, 2022
Small utility to encrypt and decrypt messages

Safe Safe is a small utility to encrypt and decrypt messages using a pair of public and private keys. Installation You need to have GPG installed in y

Gustavo Eguez 2 Dec 21, 2021
XMRiGUI is free and open-source crypto miner for Linux. It uses XMRig for mining and GTK3 for GUI.

XMRiGUI is free and open-source crypto miner for Linux. It uses XMRig for mining and GTK3 for GUI.

29 Jul 07, 2022
Powerful Tool to encrypt and decrypt files using AES.

AEScryptor Tool Description Encrypt and Decrypt files with AES-128 (16bytes key). AES mode = CFB (cipher Feedback) security = super safe! Usage [1] Ch

5 Jan 12, 2022
SysWhispers integrated shellcode loader w/ ETW patching & anti-sandboxing

TymSpecial Shellcode Loader Description This project was made as a way for myself to learn C++ and gain insight into how EDR products work. TymSpecial

Nick Frischkorn 145 Dec 20, 2022
Simple python program to encrypt files with AES-256 encryption

simple-enc Simple python program to encrypt files with AES-256 encryption Setup First install "pyAesCrypt" using pip. Thats it! Optionally you can add

Hashm 2 Jan 19, 2022
A simple Python tool to help anyone use Liquidity Pools on the BitShares blockchain.

ACCOUNT AND ACTIVE KEY ARE NOT PERSISTENT, YOU WILL NEED TO ENTER THEM EACH TIME YOU LAUNCH THE APP (but not every transaction. that's a win). If / wh

Brendan Jensen 17 Jun 15, 2022
Stenography encryption script

ImageCrypt Project description Installation Usage Project description Project AlexGyver on Python by TheK4n Design by ΠŸΠ°ΡˆΡƒΡˆΠΊΠ° Byte packing in decimal

Kan 5 Dec 14, 2022
Token drop template on Tezos blockchain, based on Merkle Tree Distribution mechanism.

πŸ›¬ Token Drop Template This is a template to perform token drops efficiently on Tezos blockchain. The drop is handled using Merkle Tree Distribution m

Anshu Jalan 5 Oct 11, 2022
Bsvlib - Bitcoin SV (BSV) Python Library

bsvlib A Bitcoin SV (BSV) Python Library that is extremely simple to use but mor

Aaron 22 Dec 15, 2022
Encrypt Your Script Python

EncryptScritpPY Encrypt Your Script Python This Script For Encrypt Your File Python Tutorial Install [+] Open Termnal [+] Type: git clone https://gith

1 Oct 07, 2021
Learn Blockchains by Building One, A simple Blockchain in Python using Flask as a micro web framework.

Blockchain ✨ Learn Blockchains by Building One Yourself Installation Make sure Python 3.6+ is installed. Install Flask Web Framework. Clone this repos

Vaibhaw 46 Jan 05, 2023
Given a string or a text file with plain text , returns his encryption using SHA256 method

Encryption using SHA256 Given a string or a .txt file with plain text. Returns his encryption using SHA256 method Requirements : pip install pyperclip

yuno 3 Jan 24, 2022
A simple web application with tools of cryptography, made with Flask and Cryptography.

Crypto Tools A web application made with Flask that allows the use of some cryptography tools like message digest, RSA key pair generation and a decip

Felipe Valentin 0 Jan 20, 2022
Best blockchain in the world

alphachain Best blockchain in the world!!! Can be used to implement Layer 2 cryptocurrency protocol just click alphachain.py and it will execute autom

NiΓ±o Sison 0 Feb 18, 2022
Implementation of Smart Batch Auction for NFT launches on Tezos.

NFT Smart Batch Auction Smart Batch Auctions are an improvement over the traditional first come first serve (FCFS) NFT drops. FCFS design has been in

Anshu Jalan 5 May 06, 2022