Python Automated Machine Learning library for tabular data.

Overview

Read the Docs Lines of code GitHub issues GitHub Repo stars GitHub contributors


Logo

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Science tasks.
๐Ÿ“š Explore the docs ยป

๐Ÿž Report Bug ยท ๐Ÿ†• Request Feature

Table of Contents

  1. About The Project
  2. Getting Started
  3. Usage
  4. Roadmap
  5. Contributing
  6. License
  7. Contact

About the project

Disclaimer

This library is an open-source research project and is not part of any official SAP products.

What's this?

This is a simple but accurate Automated Machine Learning library. Based on SAP HANA powerful in-memory algorithms, it provides high accuracy in multiple machine learning tasks. Our library also uses numerous data preprocessing functions to automate routine data cleaning tasks. So, hana_automl goes through all AutoML steps and makes Data Science work easier.

What is SAP HANA?

From www.sap.com: SAP HANA is a high-performance in-memory database that speeds data-driven, real-time decisions and actions.

Web app

https://share.streamlit.io/dan0nchik/sap-hana-automl/main/web.py

Documentation

https://sap-hana-automl.readthedocs.io/en/latest/index.html

Benchmarks

https://github.com/dan0nchik/SAP-HANA-AutoML/blob/main/comparison_openml.ipynb

ML tasks:

  • Binary classification
  • Regression
  • Multiclass classification
  • Forecasting

Steps automated:

  • Data exploration
  • Data preparation
  • Feature engineering
  • Model selection
  • Model training
  • Hyperparameter tuning

๐Ÿ‘‡ By the end of summer 2021, blue part will be fully automated by our library Logo

Clients

Streamlit client Streamlit client

Built With

Getting Started

To get a package up and running, follow these simple steps.

Prerequisites

Make sure you have the following:

  1. โœ… Setup SAP HANA (skip this step if you have an instance with PAL enabled). There are 2 ways to do that.
    In HANA Cloud:

    • Create a free trial account
    • Setup an instance
    • Enable PAL - Predictive Analysis Library. It is vital to enable it because we use their algorithms.

    In Virtual Machine:

    • Rent a virtual machine in Azure, AWS, Google Cloud, etc.
    • Install HANA instance there or on your PC (if you have >32 Gb RAM).
    • Enable PAL - Predictive Analysis Library. It is vital to enable it because we use their algorithms.
  2. โœ… Installed software

  • Python > 3.6
    Skip this step if python --version returns > 3.6
  • Cython
    pip3 install Cython

Installation

There are 2 ways to install the library

  • Stable: from pypi
    pip3 install hana_automl
  • Latest: from the repository
    pip3 install https://github.com/dan0nchik/SAP-HANA-AutoML/archive/dev.zip
    Note: latest version may contain bugs, be careful!

After installation

Check that PAL (Predictive Analysis Library) is installed and roles are granted

  • Read docs section about that.
  • If you don't want to read docs, run this code
    from hana_automl.utils.scripts import setup_user
    from hana_ml.dataframe import ConnectionContext
    
    cc = ConnectionContext(address='address', user='user', password='password', port=39015)
    
    # replace with credentials of user that will be created or granted a role to run PAL.
    setup_user(connection_context=cc, username='user', password="password")

Usage

From code

Our library in a few lines of code

Connect to database.

from hana_ml.dataframe import ConnectionContext

cc = ConnectionContext(address='address',
                     user='username',
                     password='password',
                     port=1234)

Create AutoML model and fit it.

from hana_automl.automl import AutoML

model = AutoML(cc)
model.fit(
  file_path='path to training dataset', # it may be HANA table/view, or pandas DataFrame
  steps=10, # number of iterations
  target='target', # column to predict
  time_limit=120 # time limit in seconds
)

Predict.

model.predict(
file_path='path to test dataset',
id_column='ID',
verbose=1
)

For more examples, please refer to the Documentation

How to run Streamlit client

  1. Clone repository: git clone https://github.com/dan0nchik/SAP-HANA-AutoML.git
  2. Install dependencies: pip3 install -r requirements.txt
  3. Run GUI: streamlit run ./web.py

Roadmap

See the open issues for a list of proposed features (and known issues). Feel free to report any bugs :)

Contributing

Any contributions you make are greatly appreciated ๐Ÿ‘ !

  1. Fork the Project

  2. Create your Feature Branch (git checkout -b feature/NewFeature)

  3. Install dependencies

    pip3 install Cython
    pip3 install -r requirements.txt
  4. Create credentials.py file in tests directory Your files should look like this:

    SAP-HANA-AutoML
    โ”‚   README.md
    โ”‚   all other files   
    โ”‚   .....
    |
    โ””โ”€โ”€โ”€tests
        โ”‚   test files...
        โ”‚   credentials.py
    

    Copy and paste this piece of code there and replace it with your credentials:

    host = "host"
    user = "username"
    password = "password"
    port = 39015 # or any port you need
    schema = "your schema"

    Don't worry, this file is in .gitignore, so your credentials won't be seen by anyone.

  5. Make some changes

  6. Write tests that cover your code in tests directory

  7. Run tests (under SAP-HANA-AutoML directory)

    pytest
  8. Commit your changes (git commit -m 'Add some amazing features')

  9. Push to the branch (git push origin feature/AmazingFeature)

  10. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.
Don't really understand license? Check out the MIT license summary.

Contact

Authors: @While-true-codeanything, @DbusAI, @dan0nchik

Project Link: https://github.com/dan0nchik/SAP-HANA-AutoML

Owner
Daniel Khromov
Learning Swift, C#, and Data Science
Daniel Khromov
Responsible AI Workshop: a series of tutorials & walkthroughs to illustrate how put responsible AI into practice

Responsible AI Workshop Responsible innovation is top of mind. As such, the tech industry as well as a growing number of organizations of all kinds in

Microsoft 9 Sep 14, 2022
This is a curated list of medical data for machine learning

Medical Data for Machine Learning This is a curated list of medical data for machine learning. This list is provided for informational purposes only,

Andrew L. Beam 5.4k Dec 26, 2022
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023
A single Python file with some tools for visualizing machine learning in the terminal.

Machine Learning Visualization Tools A single Python file with some tools for visualizing machine learning in the terminal. This demo is composed of t

Bram Wasti 35 Dec 29, 2022
Meerkat provides fast and flexible data structures for working with complex machine learning datasets.

Meerkat makes it easier for ML practitioners to interact with high-dimensional, multi-modal data. It provides simple abstractions for data inspection, model evaluation and model training supported by

Robustness Gym 115 Dec 12, 2022
Machine-Learning with python (jupyter)

Machine-Learning with python (jupyter) ๋จธ์‹ ๋Ÿฌ๋‹ ์•ผํ•™ ์ž‘์‹ฌ 10์ผ๊ณผ ์ฅฌํ”ผํ„ฐ ๋…ธํŠธ๋ถ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ์‚ฌ์ด์–ธ์Šค ์‹œ์ž‘ ๋“ค์–ด๊ฐ€๊ธฐ์ „ https://nbviewer.org/ ํŽ˜์ด์ง€๋ฅผ ํ†ตํ•ด์„œ ์ฅฌํ”ผํ„ฐ ๋…ธํŠธ๋ถ ๋‚ด์šฉ์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์œ„ ํŽ˜์ด์ง€์—์„œ ํ˜„์žฌ ๋ ˆํฌ ๊ธฐ

HyeonWoo Jeong 1 Jan 23, 2022
A Python library for choreographing your machine learning research.

A Python library for choreographing your machine learning research.

AI2 270 Jan 06, 2023
MIT-Machine Learning with Pythonโ€“From Linear Models to Deep Learning

MIT-Machine Learning with Pythonโ€“From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
Machine Learning for RC Cars

Suiron Machine Learning for RC Cars Prediction visualization (green = actual, blue = prediction) Click the video below to see it in action! Dependenci

Kendrick Tan 706 Jan 02, 2023
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
Fit interpretable models. Explain blackbox machine learning.

InterpretML - Alpha Release In the beginning machines learned in darkness, and data scientists struggled in the void to explain them. Let there be lig

InterpretML 5.2k Jan 09, 2023
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
It is a forest of random projection trees

rpforest rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given

Lyst 211 Dec 29, 2022
Bodywork deploys machine learning projects developed in Python, to Kubernetes.

Bodywork deploys machine learning projects developed in Python, to Kubernetes. It helps you to: serve models as microservices execute batch jobs run r

Bodywork Machine Learning 409 Jan 01, 2023
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
Book Item Based Collaborative Filtering

Book-Item-Based-Collaborative-Filtering Collaborative filtering methods are used

ลžebnem 3 Jan 06, 2022
Tools for mathematical optimization region

Tools for mathematical optimization region

ๆž—ๆ™ฏ 15 Nov 30, 2022
Banpei is a Python package of the anomaly detection.

Banpei Banpei is a Python package of the anomaly detection. Anomaly detection is a technique used to identify unusual patterns that do not conform to

Hirofumi Tsuruta 282 Jan 03, 2023
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.

Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries. Documenta

2.5k Jan 07, 2023
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 09, 2023