Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

Overview

MosaicOS

Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

Introduction

Many objects do not appear frequently enough in complex scenes (e.g., certain handbags in living rooms) for training an accurate object detector, but are often found frequently by themselves (e.g., in product images). Yet, these object-centric images are not effectively leveraged for improving object detection in scene-centric images.

We propose Mosaic of Object-centric images as Scene-centric images (MosaicOS), a simple and novel framework that is surprisingly effective at tackling the challenges of long-tailed object detection. Keys to our approach are three-fold: (i) pseudo scene-centric image construction from object-centric images for mitigating domain differences, (ii) high-quality bounding box imputation using the object-centric images’ class labels, and (iii) a multistage training procedure. Check our paper for further details:

MosaicOS: A Simple and Effective Use of Object-Centric Images for Long-Tailed Object Detection. In IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

by Cheng Zhang*, Tai-Yu Pan*, Yandong Li, Hexiang Hu, Dong Xuan, Soravit Changpinyo, Boqing Gong, Wei-Lun Chao.

Mosaics

The script mosaic.py generates mosaic images and annotaions by given an annotation file in COCO format (for more information here). The following command will generate 2x2 mosaic images and the annotation file for COCO training dataset in OUTPUT_DIR/images/ and OUTPUT_DIR/annotation.json with 4 processors. --shuffle is to shuffle the order of images to synthesize and --drop-last is to drop the last couple of images if they are not enough for nrow * ncol. --demo 10 plots 10 synthesized images with annotated boxes in OUTPUT_DIR/demo/ for visualization.

 python mosaic.py --coco-file datasets/coco/annotations/instances_train2017.json --img-dir datasets/coco --output-dir output_mosaics --num-proc 4 --nrow 2 --ncol 2 --shuffle --drop-last --demo 10

*Note: In our work, we sythesize mosaics from object-centric images with pseudo bounding box to find-tune the pre-trained detector.

Pre-trained models

Our impelementation is based on Detectron2. All models are trained on LVIS training set with Repeated Factor Sampling (RFS).

LVIS v0.5 validation set

  • Object detection
Backbone Method APb APbr APbc APbf Download
R50-FPN Faster R-CNN 23.4 13.0 22.6 28.4 model
R50-FPN MosaicOS 25.0 20.2 23.9 28.3 model
  • Instance segmentation
Backbone Method AP APr APc APf APb Download
R50-FPN Mask R-CNN 24.4 16.0 24.0 28.3 23.6 model
R50-FPN MosaicOS 26.3 19.7 26.6 28.5 25.8 model

LVIS v1.0 validation set

  • Object detection
Backbone Method APb APbr APbc APbf Download
R50-FPN Faster R-CNN 22.0 10.6 20.1 29.2 model
R50-FPN MosaicOS 23.9 15.5 22.4 29.3 model
  • Instance segmentation
Backbone Method AP APr APc APf APb Download
R50-FPN Mask R-CNN 22.6 12.3 21.3 28.6 23.3 model
R50-FPN MosaicOS 24.5 18.2 23.0 28.8 25.1 model
R101-FPN Mask R-CNN 24.8 15.2 23.7 30.3 25.5 model
R101-FPN MosaicOS 26.7 20.5 25.8 30.5 27.4 model
X101-FPN Mask R-CNN 26.7 17.6 25.6 31.9 27.4 model
X101-FPN MosaicOS 28.3 21.8 27.2 32.4 28.9 model

Citation

Please cite with the following bibtex if you find it useful.

@inproceedings{zhang2021mosaicos,
  title={{MosaicOS}: A Simple and Effective Use of Object-Centric Images for Long-Tailed Object Detection},
  author={Zhang, Cheng and Pan, Tai-Yu and Li, Yandong and Hu, Hexiang and Xuan, Dong and Changpinyo, Soravit and Gong, Boqing and Chao, Wei-Lun},
  booktitle = {ICCV},
  year={2021}
}

Questions

Feel free to email us if you have any questions.

Cheng Zhang ([email protected]), Tai-Yu Pan ([email protected]), Wei-Lun Harry Chao ([email protected])

Owner
Cheng Zhang
Cheng Zhang
Fully Convlutional Neural Networks for state-of-the-art time series classification

Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin

Stephen 572 Dec 23, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
ServiceX Transformer that converts flat ROOT ntuples into columnwise data

ServiceX_Uproot_Transformer ServiceX Transformer that converts flat ROOT ntuples into columnwise data Usage You can invoke the transformer from the co

Vis 0 Jan 20, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
🛠 All-in-one web-based IDE specialized for machine learning and data science.

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

Machine Learning Tooling 2.9k Jan 09, 2023
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022