An official PyTorch implementation of the paper "Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences", ICCV 2021.

Related tags

Computer VisionLbA
Overview

PyTorch implementation of Learning by Aligning (ICCV 2021)

This is an official PyTorch implementation of the paper "Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences", ICCV 2021.

For more details, visit our project site or see our paper.

Requirements

  • Python 3.8
  • PyTorch 1.7.1
  • GPU memory >= 11GB

Getting started

First, clone our git repository.

git clone https://github.com/cvlab-yonsei/LbA.git
cd LbA

Docker

You can use docker pull sanghslee/ps:1.7.1-cuda11.0-cudnn8-runtime

Prepare datasets

  • SYSU-MM01: download from this link.
    • For SYSU-MM01, you need to preprocess the .jpg files into .npy files by running:
      • python utils/pre_preprocess_sysu.py --data_dir /path/to/SYSU-MM01
    • Modify the dataset directory below accordingly.
      • L63 of train.py
      • L54 of test.py

Train

  • run python train.py --method full

  • Important:

    • Performances reported during training does not reflect exact performances of your model. This is due to 1) evaluation protocols of the datasets and 2) random seed configurations.
    • Make sure you seperately run test.py to obtain correct results to be reported in your paper.

Test

  • run python test.py --method full
  • The results should be around:
dataset method mAP rank-1
SYSU-MM01 baseline 49.54 50.43
SYSU-MM01 full 54.14 55.41

Pretrained weights

  • Download [SYSU-MM01]
  • The results should be:
dataset method mAP rank-1
SYSU-MM01 full 55.22 56.31

Bibtex

@article{park2021learning,
  title={Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences},
  author={Park, Hyunjong and Lee, Sanghoon and Lee, Junghyup and Ham, Bumsub},
  journal={arXiv preprint arXiv:2108.07422},
  year={2021}
}

Credits

Our implementation is based on Mang Ye's code here.

Comments
  • something about run this code

    something about run this code

    thanks for your code, there is something wrong when i run you code,in this line: loss = torch.mean(comask_pos * self.criterion(feat, feat_recon_pos, feat_recon_neg)) the wrong is:RuntimeError: The size of tensor a (9) must match the size of tensor b (18) at non-singleton dimension 3 could you give me some help?

    opened by zhuchuanleiqq 12
  • When running

    When running "train. Py", there is a problem on line 132 of the "model. Py" file:

    When running "train. Py", there is a problem on line(loss = torch.mean(comask_pos * self.criterion(feat, feat_recon_pos, feat_recon_neg))) 132 of the "model. Py" file: Traceback:RuntimeError: The size of tensor a (9) must match the size of tensor b (18) at non-singleton dimension 3

    opened by redsoup 1
  • Question about the training speed

    Question about the training speed

    Thanks for your work.

    When I tried to reproduce your results with an Nvidia 2080Ti (as recommended by the paper), however, the training speed seemed very slow. It nearly took 20 minutes for each epoch on SYSU-MM01, which mismatched with the reported 8 hours training time.

    I have already used cuda for acceleration. Thus, I wonder how did this happen. Thank you.

    opened by hansonchen1996 1
  • Problems about the performance

    Problems about the performance

    I have run your source code on both SYSU and RegDB datasets, but I didn't get the performance of your paper. So I want to know how to set the hyper-parameter to get the performance of your paper?

    opened by Mrkkew 1
  • Visualization problem

    Visualization problem

    Hello, Thanks for your great work, I am wondering about the visualization part, use mask and comask matrix in SYSU-MM01 dataset. Can I get some details about the steps of your visualization method? Thank you very much.

    opened by sunset233 0
Owner
CV Lab @ Yonsei University
CV Lab @ Yonsei University
Brief idea about our project is mentioned in project presentation file.

Brief idea about our project is mentioned in project presentation file. You just have to run attendance.py file in your suitable IDE but we prefer jupyter lab.

Dhruv ;-) 3 Mar 20, 2022
make a better chinese character recognition OCR than tesseract

deep ocr See README_en.md for English installation documentation. 只在ubuntu下面测试通过,需要virtualenv安装,安装路径可自行调整: git clone https://github.com/JinpengLI/deep

Jinpeng 1.5k Dec 28, 2022
A machine learning software for extracting information from scholarly documents

GROBID GROBID documentation Visit the GROBID documentation for more detailed information. Summary GROBID (or Grobid, but not GroBid nor GroBiD) means

Patrice Lopez 1.9k Jan 08, 2023
Python library to extract tabular data from images and scanned PDFs

Overview ExtractTable - API to extract tabular data from images and scanned PDFs The motivation is to make it easy for developers to extract tabular d

Org. Account 165 Dec 31, 2022
Implementation of our paper 'PixelLink: Detecting Scene Text via Instance Segmentation' in AAAI2018

Code for the AAAI18 paper PixelLink: Detecting Scene Text via Instance Segmentation, by Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Contributions

758 Dec 22, 2022
Pre-Recognize Library - library with algorithms for improving OCR quality.

PRLib - Pre-Recognition Library. The main aim of the library - prepare image for recogntion. Image processing can really help to improve recognition q

Alex 80 Dec 30, 2022
Hand Detection and Finger Detection on Live Feed

Hand-Detection-On-Live-Feed Hand Detection and Finger Detection on Live Feed Getting Started Install the dependencies $ git clone https://github.com/c

Chauhan Mahaveer 2 Jan 02, 2022
Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Handwritten Text Recognition with TensorFlow Update 2021: more robust model, faster dataloader, word beam search decoder also available for Windows Up

Harald Scheidl 1.5k Jan 07, 2023
An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Oriented Scene Text Detection

InceptText-Tensorflow An Implementation of the alogrithm in paper IncepText: A New Inception-Text Module with Deformable PSROI Pooling for Multi-Orien

GeorgeJoe 115 Dec 12, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 91 Nov 22, 2022
This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the robots of the future.

This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the

Elkin Javier Guerra Galeano 17 Nov 03, 2022
Tracking the latest progress in Scene Text Detection and Recognition: Must-read papers well organized

SceneTextPapers Tracking the latest progress in Scene Text Detection and Recognition: must-read papers well organized Information about this repositor

Shangbang Long 763 Jan 01, 2023
A post-processing tool for scanned sheets of paper.

unpaper Originally written by Jens Gulden — see AUTHORS for more information. Licensed under GNU GPL v2 — see COPYING for more information. Overview u

27 Dec 07, 2022
Document Image Dewarping

Document image dewarping using text-lines and line Segments Abstract Conventional text-line based document dewarping methods have problems when handli

Taeho Kil 268 Dec 23, 2022
A little but useful tool to explore OCR data extracted with `pytesseract` and `opencv`

Screenshot OCR Tool Extracting data from screen time screenshots in iOS and Android. We are exploring 3 options: Simple OCR with no text position usin

Gabriele Marini 1 Dec 07, 2021
The Open Source Framework for Machine Vision

SimpleCV Quick Links: About Installation [Docker] (#docker) Ubuntu Virtual Environment Arch Linux Fedora MacOS Windows Raspberry Pi SimpleCV Shell Vid

Sight Machine 2.6k Dec 31, 2022
OCR-D-compliant page segmentation

ocrd_segment This repository aims to provide a number of OCR-D-compliant processors for layout analysis and evaluation. Installation In your virtual e

OCR-D 59 Sep 10, 2022
Text language identification using Wikipedia data

Text language identification using Wikipedia data The aim of this project is to provide high-quality language detection over all the web's languages.

Vsevolod Dyomkin 28 Jul 09, 2022
Deep Learning Chinese Word Segment

引用 本项目模型BiLSTM+CRF参考论文:http://www.aclweb.org/anthology/N16-1030 ,IDCNN+CRF参考论文:https://arxiv.org/abs/1702.02098 构建 安装好bazel代码构建工具,安装好tensorflow(目前本项目需

2.1k Dec 23, 2022
This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and flexible design and ready to be integrated right into your system!

Passport-Recogniton-System This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and fle

Mo'men Ashraf Muhamed 7 Jan 04, 2023