An official PyTorch implementation of the paper "Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences", ICCV 2021.

Related tags

Computer VisionLbA
Overview

PyTorch implementation of Learning by Aligning (ICCV 2021)

This is an official PyTorch implementation of the paper "Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences", ICCV 2021.

For more details, visit our project site or see our paper.

Requirements

  • Python 3.8
  • PyTorch 1.7.1
  • GPU memory >= 11GB

Getting started

First, clone our git repository.

git clone https://github.com/cvlab-yonsei/LbA.git
cd LbA

Docker

You can use docker pull sanghslee/ps:1.7.1-cuda11.0-cudnn8-runtime

Prepare datasets

  • SYSU-MM01: download from this link.
    • For SYSU-MM01, you need to preprocess the .jpg files into .npy files by running:
      • python utils/pre_preprocess_sysu.py --data_dir /path/to/SYSU-MM01
    • Modify the dataset directory below accordingly.
      • L63 of train.py
      • L54 of test.py

Train

  • run python train.py --method full

  • Important:

    • Performances reported during training does not reflect exact performances of your model. This is due to 1) evaluation protocols of the datasets and 2) random seed configurations.
    • Make sure you seperately run test.py to obtain correct results to be reported in your paper.

Test

  • run python test.py --method full
  • The results should be around:
dataset method mAP rank-1
SYSU-MM01 baseline 49.54 50.43
SYSU-MM01 full 54.14 55.41

Pretrained weights

  • Download [SYSU-MM01]
  • The results should be:
dataset method mAP rank-1
SYSU-MM01 full 55.22 56.31

Bibtex

@article{park2021learning,
  title={Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences},
  author={Park, Hyunjong and Lee, Sanghoon and Lee, Junghyup and Ham, Bumsub},
  journal={arXiv preprint arXiv:2108.07422},
  year={2021}
}

Credits

Our implementation is based on Mang Ye's code here.

Comments
  • something about run this code

    something about run this code

    thanks for your code, there is something wrong when i run you code,in this line: loss = torch.mean(comask_pos * self.criterion(feat, feat_recon_pos, feat_recon_neg)) the wrong is:RuntimeError: The size of tensor a (9) must match the size of tensor b (18) at non-singleton dimension 3 could you give me some help?

    opened by zhuchuanleiqq 12
  • When running

    When running "train. Py", there is a problem on line 132 of the "model. Py" file:

    When running "train. Py", there is a problem on line(loss = torch.mean(comask_pos * self.criterion(feat, feat_recon_pos, feat_recon_neg))) 132 of the "model. Py" file: Traceback:RuntimeError: The size of tensor a (9) must match the size of tensor b (18) at non-singleton dimension 3

    opened by redsoup 1
  • Question about the training speed

    Question about the training speed

    Thanks for your work.

    When I tried to reproduce your results with an Nvidia 2080Ti (as recommended by the paper), however, the training speed seemed very slow. It nearly took 20 minutes for each epoch on SYSU-MM01, which mismatched with the reported 8 hours training time.

    I have already used cuda for acceleration. Thus, I wonder how did this happen. Thank you.

    opened by hansonchen1996 1
  • Problems about the performance

    Problems about the performance

    I have run your source code on both SYSU and RegDB datasets, but I didn't get the performance of your paper. So I want to know how to set the hyper-parameter to get the performance of your paper?

    opened by Mrkkew 1
  • Visualization problem

    Visualization problem

    Hello, Thanks for your great work, I am wondering about the visualization part, use mask and comask matrix in SYSU-MM01 dataset. Can I get some details about the steps of your visualization method? Thank you very much.

    opened by sunset233 0
Owner
CV Lab @ Yonsei University
CV Lab @ Yonsei University
Characterizing possible failure modes in physics-informed neural networks.

Characterizing possible failure modes in physics-informed neural networks This repository contains the PyTorch source code for the experiments in the

Aditi Krishnapriyan 55 Jan 02, 2023
MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition

MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition Python 2.7 Python 3.6 MORAN is a network with rectification mechanism for

Canjie Luo 595 Dec 27, 2022
TextField: Learning A Deep Direction Field for Irregular Scene Text Detection (TIP 2019)

TextField: Learning A Deep Direction Field for Irregular Scene Text Detection Introduction The code and trained models of: TextField: Learning A Deep

Yukang Wang 101 Dec 12, 2022
LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

Murtaza Hassan 815 Dec 29, 2022
Pre-Recognize Library - library with algorithms for improving OCR quality.

PRLib - Pre-Recognition Library. The main aim of the library - prepare image for recogntion. Image processing can really help to improve recognition q

Alex 80 Dec 30, 2022
Rubik's Cube in pygame with OpenGL

Rubik Rubik's Cube in pygame with OpenGL The script show on the screen a Rubik Cube buit with OpenGL. Then I have also implemented all the possible mo

Gabro 2 Apr 15, 2022
Line based ATR Engine based on OCRopy

OCR Engine based on OCRopy and Kraken using python3. It is designed to both be easy to use from the command line but also be modular to be integrated

948 Dec 23, 2022
YOLOv5 in DOTA with CSL_label.(Oriented Object Detection)(Rotation Detection)(Rotated BBox)

YOLOv5_DOTA_OBB YOLOv5 in DOTA_OBB dataset with CSL_label.(Oriented Object Detection) Datasets and pretrained checkpoint Datasets : DOTA Pretrained Ch

1.1k Dec 30, 2022
Responsive Doc. scanner using U^2-Net, Textcleaner and Tesseract

Responsive Doc. scanner using U^2-Net, Textcleaner and Tesseract Toolset U^2-Net is used for background removal Textcleaner is used for image cleaning

3 Jul 13, 2022
An application of high resolution GANs to dewarp images of perturbed documents

Docuwarp This project is focused on dewarping document images through the usage of pix2pixHD, a GAN that is useful for general image to image translat

Thomas Huang 97 Dec 25, 2022
(CVPR 2021) ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection

ST3D Code release for the paper ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection, CVPR 2021 Authors: Jihan Yang*, Shaoshu

CVMI Lab 224 Dec 28, 2022
A tensorflow implementation of EAST text detector

EAST: An Efficient and Accurate Scene Text Detector Introduction This is a tensorflow re-implementation of EAST: An Efficient and Accurate Scene Text

2.9k Jan 02, 2023
Localization of thoracic abnormalities model based on VinBigData (top 1%)

Repository contains the code for 2nd place solution of VinBigData Chest X-ray Abnormalities Detection competition. The goal of competition was to auto

33 May 24, 2022
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).

OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents

Zuming Huang 363 Jan 03, 2023
Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation

This is the official implementation of "Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation". For more details, please

Pengyuan Lyu 309 Dec 06, 2022
Pytorch implementation of PSEnet with Pyramid Attention Network as feature extractor

Scene Text-Spotting based on PSEnet+CRNN Pytorch implementation of an end to end Text-Spotter with a PSEnet text detector and CRNN text recognizer. We

azhar shaikh 62 Oct 10, 2022
Crop regions in napari manually

napari-crop Crop regions in napari manually Usage Create a new shapes layer to annotate the region you would like to crop: Use the rectangle tool to a

Robert Haase 4 Sep 29, 2022
A Vietnamese personal card OCR website built with Django.

Django VietCardOCR Installation Creation of virtual environments is done by executing the command venv: python -m venv venv That will create a new fol

Truong Hoang Thuan 4 Sep 04, 2021
Deep learning based page layout analysis

Deep Learning Based Page Layout Analyze This is a Python implementaion of page layout analyze tool. The goal of page layout analyze is to segment page

186 Dec 29, 2022
A PyTorch implementation of ECCV2018 Paper: TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes

TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes A PyTorch implement of TextSnake: A Flexible Representation for Detecting

Prince Wang 417 Dec 12, 2022