Toolbox for OCR post-correction

Related tags

Computer Visionochre
Overview

Ochre

Ochre is a toolbox for OCR post-correction. Please note that this software is experimental and very much a work in progress!

  • Overview of OCR post-correction data sets
  • Preprocess data sets
  • Train character-based language models/LSTMs for OCR post-correction
  • Do the post-correction
  • Assess the performance of OCR post-correction
  • Analyze OCR errors

Ochre contains ready-to-use data processing workflows (based on CWL). The software also allows you to create your own (OCR post-correction related) workflows. Examples of how to create these can be found in the notebooks directory (to be able to use those, make sure you have Jupyter Notebooks installed). This directory also contains notebooks that show how results can be analyzed and visualized.

Data sets

Installation

git clone [email protected]:KBNLresearch/ochre.git
cd ochre
pip install -r requirements.txt
python setup.py develop
  • Using the CWL workflows requires (the development version of) nlppln and its requirements (see installation guidelines).
  • To run a CWL workflow type: cwltool|cwl-runner path/to/workflow.cwl <inputs> (if you run the command without inputs, the tool will tell you about what inputs are required and how to specify them). For more information on running CWL workflows, have a look at the nlppln documentation. This is especially relevant for Windows users.
  • Please note that some of the CWL workflows contain absolute paths, if you want to use them on your own machine, regenerate them using the associated Jupyter Notebooks.

Preprocessing

The software needs the data in the following formats:

  • ocr: text files containing the ocr-ed text, one file per unit (article, page, book, etc.)
  • gs: text files containing the gold standard (correct) text, one file per unit (article, page, book, etc.)
  • aligned: json files containing aligned character sequences:
{
    "ocr": ["E", "x", "a", "m", "p", "", "c"],
    "gs": ["E", "x", "a", "m", "p", "l", "e"]
}

Corresponding files in these directories should have the same name (or at least the same prefix), for example:

├── gs
│   ├── 1.txt
│   ├── 2.txt
│   └── 3.txt
├── ocr
│   ├── 1.txt
│   ├── 2.txt
│   └── 3.txt
└── aligned
    ├── 1.json
    ├── 2.json
    └── 3.json

To create data in these formats, CWL workflows are available. First run a preprocess workflow to create the gs and ocr directories containing the expected files. Next run an align workflow to create the align directory.

To create the alignments, run one of:

  • align-dir-pack.cwl to align all files in the gs and ocr directories
  • align-test-files-pack.cwl to align the test files in a data division

These workflows can be run as stand-alone; associated notebook align-workflow.ipynb.

Training networks for OCR post-correction

First, you need to divide the data into a train, validation and test set:

python -m ochre.create_data_division /path/to/aligned

The result of this command is a json file containing lists of file names, for example:

{
    "train": ["1.json", "2.json", "3.json", "4.json", "5.json", ...],
    "test": ["6.json", ...],
    "val": ["7.json", ...]
}
  • Script: lstm_synched.py

OCR post-correction

If you trained a model, you can use it to correct OCR text using the lstm_synced_correct_ocr command:

python -m ochre.lstm_synced_correct_ocr /path/to/keras/model/file /path/to/text/file/containing/the/characters/in/the/training/data /path/to/ocr/text/file

or

cwltool /path/to/ochre/cwl/lstm_synced_correct_ocr.cwl --charset /path/to/text/file/containing/the/characters/in/the/training/data --model /path/to/keras/model/file --txt /path/to/ocr/text/file

The command creates a text file containing the corrected text.

To generate corrected text for the test files of a dataset, do:

cwltool /path/to/ochre/cwl/post_correct_test_files.cwl --charset /path/to/text/file/containing/the/characters/in/the/training/data --model /path/to/keras/model/file --datadivision /path/to/data/division --in_dir /path/to/directory/with/ocr/text/files

To run it for a directory of text files, use:

cwltool /path/to/ochre/cwl/post_correct_dir.cwl --charset /path/to/text/file/containing/the/characters/in/the/training/data --model /path/to/keras/model/file --in_dir /path/to/directory/with/ocr/text/files

(these CWL workflows can be run as stand-alone; associated notebook post_correction_workflows.ipynb)

  • Explain merging of predictions

Performance

To calculate performance of the OCR (post-correction), the external tool ocrevalUAtion is used. More information about this tool can be found on the website and wiki.

Two workflows are available for calculating performance. The first calculates performance for all files in a directory. To use it type:

cwltool /path/to/ochre/cwl/ocrevaluation-performance-wf-pack.cwl#main --gt /path/to/dir/containing/the/gold/standard/ --ocr /path/to/dir/containing/ocr/texts/ [--out_name name-of-output-file.csv]

The second calculates performance for all files in the test set:

cwltool /path/to/ochre/cwl/ocrevaluation-performance-test-files-wf-pack.cwl --datadivision /path/to/datadivision.json --gt /path/to/dir/containing/the/gold/standard/ --ocr /path/to/dir/containing/ocr/texts/ [--out_name name-of-output-file.csv]

Both of these workflows are stand-alone (packed). The corresponding Jupyter notebook is ocr-evaluation-workflow.ipynb.

To use the ocrevalUAtion tool in your workflows, you have to add it to the WorkflowGenerator's steps library:

wf.load(step_file='https://raw.githubusercontent.com/nlppln/ocrevaluation-docker/master/ocrevaluation.cwl')
  • TODO: explain how to calculate performance with ignore case (or use lowercase-directory.cwl)

OCR error analysis

Different types of OCR errors exist, e.g., structural vs. random mistakes. OCR post-correction methods may be suitable for fixing different types of errors. Therefore, it is useful to gain insight into what types of OCR errors occur. We chose to approach this problem on the word level. In order to be able to compare OCR errors on the word level, words in the OCR text and gold standard text need to be mapped. CWL workflows are available to do this. To create word mappings for the test files of a dataset, use:

cwltool  /path/to/ochre/cwl/word-mapping-test-files.cwl --data_div /path/to/datadivision --gs_dir /path/to/directory/containing/the/gold/standard/texts --ocr_dir /path/to/directory/containing/the/ocr/texts/ --wm_name name-of-the-output-file.csv

To create word mappings for two directories of files, do:

cwltool  /path/to/ochre/cwl/word-mapping-wf.cwl --gs_dir /path/to/directory/containing/the/gold/standard/texts/ --ocr_dir /path/to/directory/containing/the/ocr/texts/ --wm_name name-of-the-output-file.csv

(These workflows can be regenerated using the notebook word-mapping-workflow.ipynb.)

The result is a csv-file containing mapped words. The first column contains a word id, the second column the gold standard text and the third column contains the OCR text of the word:

,gs,ocr
0,Hello,Hcllo
1,World,World
2,!,.

This csv file can be used to analyze the errors. See notebooks/categorize errors based on word mappings.ipynb for an example.

We use heuristics to categorize the following types of errors (ochre/ocrerrors.py):

  • TODO: add error types

OCR quality measure

Jupyter notebook

  • better (more balanced) training data is needed.

Generating training data

  • Scramble gold standard text

Ideas

  • Visualization of probabilities for each character (do the ocr mistakes have lower probability?) (probability=color)

License

Copyright (c) 2017-2018, Koninklijke Bibliotheek, Netherlands eScience Center

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Owner
National Library of the Netherlands / Research
National Library of the Netherlands / Research
National Library of the Netherlands / Research
Fine tuning keras-ocr python package with custom synthetic dataset from scratch

OCR-Pipeline-with-Keras The keras-ocr package generally consists of two parts: a Detector and a Recognizer: Detector is responsible for creating bound

Eugene 1 Jan 05, 2022
Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.

Handwritten Line Text Recognition using Deep Learning with Tensorflow Description Use Convolutional Recurrent Neural Network to recognize the Handwrit

sushant097 224 Jan 07, 2023
OCR, Object Detection, Number Plate, Real Time

README.md PrePareded anaconda env requirements.txt clova AI → deep text recognition → trained weights (ex, .pth) wpod-net weights (ex, .h5 , .json) ht

Kaven Lee 7 Dec 06, 2022
OpenGait is a flexible and extensible gait recognition project

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
docstrum

Docstrum Algorithm Getting Started This repo is for developing a Docstrum algorithm presented by O’Gorman (1993). Disclaimer This source code is built

Chulwoo Mike Pack 54 Dec 13, 2022
Motion Detection Squid Game with OpenCV Python

*Motion Detection Squid Game with OpenCV Python i am newbie in python. In this project I made a simple game to follow the trend about the red light gr

Nayan 17 Nov 22, 2022
Face Recognizer using Opencv Python

Face Recognizer using Opencv Python The first step create your own dataset with file open-cv-create_dataset second step You can put the photo accordin

Han Izza 2 Nov 16, 2021
Python Computer Vision Aim Bot for Roblox's Phantom Forces

Python-Phantom-Forces-Aim-Bot Python Computer Vision Aim Bot for Roblox's Phanto

drag0ngam3s 2 Jul 11, 2022
Lightning Fast Language Prediction 🚀

whatthelang Lightning Fast Language Prediction 🚀 Dependencies The dependencies can be installed using the requirements.txt file: $ pip install -r req

Indix 152 Oct 16, 2022
Opencv-image-filters - A camera to capture videos in real time by placing filters using Python with the help of the Tkinter and OpenCV libraries

Opencv-image-filters - A camera to capture videos in real time by placing filters using Python with the help of the Tkinter and OpenCV libraries

Sergio Díaz Fernández 1 Jan 13, 2022
This pyhton script converts a pdf to Image then using tesseract as OCR engine converts Image to Text

Script_Convertir_PDF_IMG_TXT Este script de pyhton convierte un pdf en Imagen luego utilizando tesseract como motor OCR convierte la Imagen a Texto. p

alebogado 1 Jan 27, 2022
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition PDF Abstract Explainable artificial intelligence has been gaining attention

87 Dec 26, 2022
An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports.

Optical_Character_Recognition An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports. As an IOT/Compute

Ramsis Hammadi 1 Feb 12, 2022
This Repository contain Opencv Projects in python

Python-Opencv OpenCV OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was

Yash Sakre 2 Nov 06, 2021
Give a solution to recognize MaoYan font.

猫眼字体识别 该 github repo 在于帮助xjtlu的同学们识别猫眼的扭曲字体。已经打包上传至 pypi ,可以使用 pip 直接安装。 猫眼字体的识别不出来的原理与解决思路在采茶上 使用方法: import MaoYanFontRecognize

Aruix 4 Jun 30, 2022
Genalog is an open source, cross-platform python package allowing generation of synthetic document images with custom degradations and text alignment capabilities.

Genalog is an open source, cross-platform python package allowing generation of synthetic document images with custom degradations and text alignment capabilities.

Microsoft 235 Dec 22, 2022
Go package for OCR (Optical Character Recognition), by using Tesseract C++ library

gosseract OCR Golang OCR package, by using Tesseract C++ library. OCR Server Do you just want OCR server, or see the working example of this package?

Hiromu OCHIAI 1.9k Dec 28, 2022
WACV 2022 Paper - Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching

Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching Code based on our WACV 2022 Accepted Paper: https://arxiv.org/pdf/

Andres 13 Dec 17, 2022
Polaris is a Face recognition attendance system .

Support Me 🚀 About Polaris 📄 Polaris is a system based on facial recognition with a futuristic GUI design, Can easily find people informations store

XN3UR0N 215 Dec 26, 2022