deployment of a hybrid model for automatic weapon detection/ anomaly detection for surveillance applications

Overview

Automatic Weapon Detection

Deployment of a hybrid model for automatic weapon detection/ anomaly detection for surveillance applications.

Stars Badge Forks Badge Pull Requests Badge Issues Badge GitHub contributors License   Badge


Loved the project? Please visit our Website


Literature Survey

Security is always a main concern in every domain, due to a rise in crime rate in a crowded event or suspicious lonely areas. Weapon detection and monitoring have major applications of computer vision to tackle various problems. Due to growing demand in the protection of safety, security and personal properties, needs and deployment of video surveillance systems can recognize and interpret the scene and anomaly events play a vital role in intelligence monitoring. We implemented weapon detection using a convolution neural network (CNN). Results are tabulated, both algorithms achieve good accuracy, but their application in real situations can be based on the trade-off between speed and accuracy. We surveyed various research evidences and proposed a detection framework which involves three phases detection of objects, recognition of detected objects and alarm system. Single learning based detection framework is used because of which high processing speed is achieved. Because dense features need only to be evaluated once rather than individually for each detector. For object detection a framework using a linear support vector machine classifier with histogram of oriented gradients features. Using a combination of ACF(Aggregated Channel Features) features and sp- LBP(Local binary pattern)features can provide a better trade-off between detection performance and system runtime. some techniques are used to post-process raw detection results. Uses shrinkage version of AdaBoost as the strong classifier and use decision trees as weak learners.To train the classifier, the procedure known as bootstrapping is applied . Shifu Zhou(researcher) et al suggested a method for detecting and locating anomalous activities in video sequences of crowded scenes. The key for method is the coupling of anomdescribon with a spatial-temporal Convolutional Neural Networks. This architecture allows us to capture features from both spatial and temporal dimensions by performing spatial-temporal convolutions, thereby, both the appearance and motion information encoded in continuous frames are extracted Two criterions are used for evaluating anomaly detection accuracy namely a frame level criterion and a pixel level criterion. Motion pattern and FRP (False positive rates) are calculated for evaluating performance. And DR(Detection Rate) corresponds to the successful detection rate of the anomalies happening at EER(Equal Error Rate). We also surveyed from various research evidences that One of the main challenges is to detect anomalies both in time and space domains. This implies to find out which frames that anomalies occur and to localize regions that generate the anomalies within these frames. This model extracts features from both the spatial and the temporal dimensions by performing. 3D convolutions, is achieved by convolving a 3D kernel to the cube formed by stacking multiple contiguous frames together. The issues are that , accurate recognition of actions is a highly challenging task due to cluttered backgrounds, occlusions, and viewpoint variations perform 3D convolution in the convolutional layers of CNNs so that discriminative features along both the spatial and the temporal dimensions are captured.3D convolution is achieved by stacking multiple contiguous frames together. The developed 3D CNN model was trained using a supervised algorithm , and it requires a large number of labelled samples. we propose a novel end-to-end model which integrates the one-class Support Vector Machine (SVM) into Convolutional Neural Network (CNN). Specifically, the robust loss function derived from the one-class SVM is proposed to optimize the parameters of this model. We proposed a learning model for weapon detection from video sequences by combining CNN and SVM. CNN is utilized to learn the underlying high-dimensional normal representations to effectively capture normal features. SVM layer not only distinguishes normal/abnormal cases as a discriminator, but also optimizes parameters of the whole model as an optimization objective. From our exhaustive study of work done and research about Weapon detection model , we proposed a Model which detects the Weapon from video or Picture and activates the alarm.

Features to Detect Weapons / Intruders

Weapons:

We propose algorithms that are able to alert the human operator when a firearm or knife is visible in the image. We have focused on limiting the number of false alarms in order to allow for a real-life application of the system. The specificity and sensitivity of the knife detection are significantly better than others published recently. We have also managed to propose a version of a firearm detection algorithm that offers a near-zero rate of false alarms. We have shown that it is possible to create a system that is capable of an early warning in a dangerous situation, which may lead to faster and more effective response times and a reduction in the number of potential victims.

Size:

Estimation of the size of software is an essential part of Software Project Management. It helps the project manager to further predict the effort and time which will be needed to build the project. Various measures are used in project size estimation. Some of these are: • Lines of Code • Number of entities in ER diagram • Total number of processes in detailed data flow diagram • Function points

Find the number of functions belonging to the following types: • External Inputs: Functions related to data entering the system. • External outputs: Functions related to data exiting the system. • External Inquiries: They leads to data retrieval from system but don’t change the system. • Internal Files: Logical files maintained within the system. Log files are not included here. • External interface Files: These are logical files for other applications which are used by our system.

Trigger:

Detecting small objects is a difficult task as these objects are rather smaller than the human. In this section, we will implement a gun detector that trained by using the discriminatively trained part-based models. As our object of interest is gun, we will collect different positive samples from different type of gun related videos. To minimize the amount of supervision, we provide the bounding box of the gun in the first frame where the gun appears and apply the tracking method to let it track for the gun. We will then use the result from the tracker to annotate the gun location in each image. For the negative samples, we will use all the annotation from the Pascal Visual Object Classes Challenge (VOC) as all the annotations are without any gun object. Lastly, all the annotation results of the positive sample and negative samples are used as the input for the DPM to train a gun model. Tracking is required in different stages of our system because the object detector tends to produce sparse detection as the object of interest is too small.

Handle

Cohen’s kappa coefficient is used to check the agreement between experts which is calculated using following formula:

aaaaa

where pa ¼ proportion of observations for agreement of two experts; pc ¼ proportion of observations for agreement which is expected to happen by chance between two experts. Agreement matrix of proportions is for weapon purchase. Cohen’ Kappa coefficient value was found to be 0.9425 at a ¼ 0.05 (a is probability of confidence interval for kappa statistics) which signifies an almost perfect agreement between the experts. R Programming Package “psych” is used to compute Cohen’s kappa coefficient. Considering significance and magnitude of kappa coefficient so computed, the annotations labelling represents the justification of process of manually labelling approach which can therefore be used in our analysis to train and test our proposed automated illegal weapon procurement model.

Project Summary:

In this project CNN algorithm is simulated for pre-labelled image dataset for weapon (gun, knife) detection. The algorithm is efficient and gives good results but its application in real time is based on a trade-off between speed and accuracy. With respect to accuracy, CNN gives accuracy of approx. 85%. In our CNN model we have taken 16 layers. Apart from this the optimiser used by us is SGD, with categorical cross entropy loss and accuracy is used as the metrics. For every layer we have used the ‘relu’ activation function, for the last layer we have used softmax. We have used Tensorflow, Keras, PIL, OpenCV, Playsound modules to implement the project. Our software takes a 240 x 240 image as input, in a batch size of 32.

Further, it can be implemented for larger datasets by training using GPUs and high-end DSP and FPGA kits.

Owner
Janhavi
Janhavi
零样本学习测评基准,中文版

ZeroCLUE 零样本学习测评基准,中文版 零样本学习是AI识别方法之一。 简单来说就是识别从未见过的数据类别,即训练的分类器不仅仅能够识别出训练集中已有的数据类别, 还可以对于来自未见过的类别的数据进行区分。 这是一个很有用的功能,使得计算机能够具有知识迁移的能力,并无需任何训练数据, 很符合现

CLUE benchmark 27 Dec 10, 2022
ocroseg - This is a deep learning model for page layout analysis / segmentation.

ocroseg This is a deep learning model for page layout analysis / segmentation. There are many different ways in which you can train and run it, but by

NVIDIA Research Projects 71 Dec 06, 2022
Text Detection from images using OpenCV

EAST Detector for Text Detection OpenCV’s EAST(Efficient and Accurate Scene Text Detection ) text detector is a deep learning model, based on a novel

Abhishek Singh 88 Oct 20, 2022
huoyijie 1.2k Dec 29, 2022
Image Smoothing and Blurring Using OpenCV

Image-Smoothing-and-Blurring-Using-OpenCV This repository contains codes for performing image smoothing and blurring using OpenCV. There are different

Happy N. Monday 3 Feb 15, 2022
Code for the paper "DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks" (ICCV '19)

DewarpNet This repository contains the codes for DewarpNet training. Recent Updates [May, 2020] Added evaluation images and an important note about Ma

<a href=[email protected]"> 354 Jan 01, 2023
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
A bot that plays TFT using OCR. Keeps track of bench, board, items, and plays the user defined team comp.

NOTES: To ensure best results, make sure you are running this on a computer that has decent specs. 1920x1080 fullscreen is required in League, game mu

francis 125 Dec 30, 2022
ScanTailor Advanced is the version that merges the features of the ScanTailor Featured and ScanTailor Enhanced versions, brings new ones and fixes.

ScanTailor Advanced The ScanTailor version that merges the features of the ScanTailor Featured and ScanTailor Enhanced versions, brings new ones and f

952 Dec 31, 2022
Binarize document images

Binarization Binarization for document images Examples Introduction This tool performs document image binarization (i.e. transform colour/grayscale to

QURATOR-SPK 48 Jan 02, 2023
Ddddocr - 通用验证码识别OCR pypi版

带带弟弟OCR通用验证码识别SDK免费开源版 今天ddddocr又更新啦! 当前版本为1.3.1 想必很多做验证码的新手,一定头疼碰到点选类型的图像,做样本费时

Sml2h3 4.4k Dec 31, 2022
When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework (CVPR 2021 oral)

MTLFace This repository contains the PyTorch implementation and the dataset of the paper: When Age-Invariant Face Recognition Meets Face Age Synthesis

Hzzone 120 Jan 05, 2023
Scene text recognition

AttentionOCR for Arbitrary-Shaped Scene Text Recognition Introduction This is the ranked No.1 tensorflow based scene text spotting algorithm on ICDAR2

777 Jan 09, 2023
Memory tests solver with using OpenCV

Human Benchmark project This project is OpenCV based programs which are puzzle solvers for 7 different games for https://humanbenchmark.com/. made as

Bahadır Araz 24 Dec 27, 2022
OpenCVを用いたカメラキャリブレーションのサンプルです。2021/06/21時点でPython実装のある3種類(通常カメラ向け、魚眼レンズ向け(fisheyeモジュール)、全方位カメラ向け(omnidirモジュール))について用意しています。

OpenCV-CameraCalibration-Example FishEyeCameraCalibration.mp4 OpenCVを用いたカメラキャリブレーションのサンプルです 2021/06/21時点でPython実装のある以下3種類について用意しています。 通常カメラ向け 魚眼レンズ向け(

KazuhitoTakahashi 34 Nov 17, 2022
A Python script to capture images from multiple webcams at once and save them into your local machine

Capturing multiple images at once from Webcam Using OpenCV Capture multiple image by accessing the webcam of your system and save it to your machine.

Fazal ur Rehman 2 Apr 16, 2022
Learning Camera Localization via Dense Scene Matching, CVPR2021

This repository contains code of our CVPR 2021 paper - "Learning Camera Localization via Dense Scene Matching" by Shitao Tang, Chengzhou Tang, Rui Hua

tangshitao 65 Dec 01, 2022
InverseRenderNet: Learning single image inverse rendering, CVPR 2019.

InverseRenderNet: Learning single image inverse rendering !! Check out our new work InverseRenderNet++ paper and code, which improves the inverse rend

Ye Yu 141 Dec 20, 2022
Document blur detection based on Laplacian operator and text detection.

Document Blur Detection For general blurred image, using the variance of Laplacian operator is a good solution. But as for the blur detection of docum

JoeyLr 5 Oct 20, 2022
A synthetic data generator for text recognition

TextRecognitionDataGenerator A synthetic data generator for text recognition What is it for? Generating text image samples to train an OCR software. N

Edouard Belval 2.5k Jan 04, 2023