Curso práctico: NLP de cero a cien 🤗

Overview

Curso Práctico: NLP de cero a cien

Comprende todos los conceptos y arquitecturas clave del estado del arte del NLP y aplícalos a casos prácticos utilizando una de las bibliotecas más populares en este campo: Hugging Face. Independientemente de tus conocimientos actuales, terminarás el curso hablando tranquilamente de Transformers, Word Embeddings, modelos secuenciales, mecanismos de atención y modelado del lenguaje.

➡️ Versión web: https://somosnlp.org/nlp-de-cero-a-cien

Calendario

El curso está dividido en 7 sesiones que se impartirán cada dos martes a las 18h CET a partir del 13 de Julio. Dependiendo de tu nivel actual puedes unirte al curso en la sesión que quieras.

  • 13 Jul: Introducción al NLP y Word Embeddings
  • 27 Jul: Modelos secuenciales (RNNs, LSTMs)
  • 10 Ag: Transformers I. Arquitectura Transformer y mecanismo de atención
  • 24 Ag: Transformers II. Aprendizaje por transferencia
  • 7 Sep: Transformers III. Generación de texto
  • 21 Sep: Transformers IV. Modelado del lenguaje
  • 5 Oct: Demos de NLP con 🤗 Spaces

Cada sesión durará 30 minutos y habrá 10 minutos extra dedicados a resolver dudas de los asistentes.

¿Te has perdido una sesión? ¡No pasa nada!

  • Subimos las grabaciones a esta playlist de YouTube.
  • En este repositorio puedes consultar todo el material del curso y recursos extra.
  • Puedes preguntar tus dudas en el canal #nlp-de-cero-a-cien de nuesta comunidad de Discord.

Formadores

Por orden alfabético:

María Grandury: María es una Ingeniera e Investigadora de Machine Learning enfocada en NLP y en la fiabilidad de la IA (i.e. XAI, ataques adversarios). Estudió el doble grado de Matemáticas y Física y actualmente trabaja en neurocat, donde desarrolla una herramienta para explicar y evaluar la estabilidad de cualquier modelo de ML. María forma parte de Women in AI & Robotics cuya misión es promover una IA inclusiva y responsable. También fundó la comunidad Somos NLP con el objetivo de acelerar el avance del NLP en español.

Manuel Romero: Manuel tiene una "mente inquieta y un alma emprendedora". Estudió ingeniería informática y cuenta con casi 10 años de experiencia como desarrollador back-end y arquitecto de software. Además, es un SCRUM Master y Product Owner certificado. Actualmente trabaja en Narrativa como Ingeniero Senior de Inteligencia Artificial especializado en NLP/NLG y es el mayor contribuidor del Model Hub de Hugging Face con más de 200 modelos.

Omar Sanseviero: Omar es un Ingeniero de Machine Learning con 7 años de experiencia en la industria de la tecnología. Actualmente trabaja en Hugging Face en el equipo de open-source democratizando el uso de Machine Learning. Previamente, Omar trabajó como Ingeniero de Software en Google en Suiza en el equipo de Assistant. Omar es un apasionado de la educación y co-fundó AI Learners, una comunidad de personas que buscan aprender y discutir temas sobre Inteligencia Artificial y sus diferentes aplicaciones.

Lewis Tunstall: Lewis es Ingeniero de Machine Learning en el equipo de open-source de Hugging Face. Tiene varios años de experiencia construyendo aplicaciones de Machine Learning para startups y empresas en los dominios de NLP, análisis de datos topológicos y series temporales. Tiene un doctorado en física teórica y ha ocupado puestos de investigación en Australia, Estados Unidos y Suiza. Su trabajo actual se centra en el desarrollo de herramientas para la comunidad de NLP y en la formación de las personas para que las utilicen de forma eficaz.

Inscripción

El curso es gratuito y via online. Al registrarte en Eventbrite recibirás un email de confirmación y otro el día de cada sesión para poder entrar en el workshop.

Organizan Somos NLP 🤗 y Spain AI

Somos NLP 🤗

Somos NLP es la red internacional de profesionales, investigadores y estudiantes acelerando el avance del NLP en español. Nació como la comunidad de hispanohablantes de la iniciativa "Languages at Hugging Face" con el objetivo de democratizar el NLP en español:

  • ¿Cómo? Creando y compartiendo recursos que posibiliten y aceleren el desarrollo del NLP en Español.
  • ¿Por qué? La investigación en NLP está centrada en el inglés y descuida las dificultades particulares del NLP en español. Creemos que un idioma tan extendido como el español debería tener una representación acorde en el ámbito del NLP y vamos a hacer esto realidad.

¡Únete a la comunidad en Discord y síguenos en YouTube, Twitter y LinkedIn!

Spain AI

Spain AI es una red nacional y asociación sin ánimo de lucro, con la finalidad de crear una comunidad colaborativa dentro del ámbito de la Inteligencia Artificial en España.

26 ciudades ya y creciendo. Únete a nosotros o crea tu propia comunidad en spain-ai.com y @Spain_AI. ¡Síguenos!

Owner
Somos NLP
Comunidad de profesionales, investigadores y estudiantes acelerando el avance del NLP en Español.
Somos NLP
Pangu-Alpha for Transformers

Pangu-Alpha for Transformers Usage Download MindSpore FP32 weights for GPU from here to data/Pangu-alpha_2.6B.ckpt Activate MindSpore environment and

One 5 Oct 01, 2022
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
Use the power of GPT3 to execute any function inside your programs just by giving some doctests

gptrun Don't feel like coding today? Use the power of GPT3 to execute any function inside your programs just by giving some doctests. How is this diff

Roberto Abdelkader Martínez Pérez 11 Nov 11, 2022
Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.

CTC Decoding Algorithms Update 2021: installable Python package Python implementation of some common Connectionist Temporal Classification (CTC) decod

Harald Scheidl 736 Jan 03, 2023
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023
This is a NLP based project to extract effective date of the contract from their text files.

Date-Extraction-from-Contracts This is a NLP based project to extract effective date of the contract from their text files. Problem statement This is

Sambhav Garg 1 Jan 26, 2022
Code-autocomplete, a code completion plugin for Python

Code AutoComplete code-autocomplete, a code completion plugin for Python.

xuming 13 Jan 07, 2023
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

Francis R. Willett 305 Dec 22, 2022
Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models

Parrot is a paraphrase based utterance augmentation framework purpose built to accelerate training NLU models. A paraphrase framework is more than just a paraphrasing model.

Prithivida 681 Jan 01, 2023
Automatically search Stack Overflow for the command you want to run

stackshell Automatically search Stack Overflow (and other Stack Exchange sites) for the command you want to ru Use the up and down arrows to change be

circuit10 22 Oct 27, 2021
Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

7 Aug 25, 2022
Levenshtein and Hamming distance computation

distance - Utilities for comparing sequences This package provides helpers for computing similarities between arbitrary sequences. Included metrics ar

112 Dec 22, 2022
Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

Maarten van Gompel 46 Dec 14, 2022
LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation

LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation Tasks | Datasets | LongLM | Baselines | Paper Introduction LOT is a ben

46 Dec 28, 2022
A benchmark for evaluation and comparison of various NLP tasks in Persian language.

Persian NLP Benchmark The repository aims to track existing natural language processing models and evaluate their performance on well-known datasets.

Mofid AI 68 Dec 19, 2022
Training and evaluation codes for the BertGen paper (ACL-IJCNLP 2021)

BERTGEN This repository is the implementation of the paper "BERTGEN: Multi-task Generation through BERT" (https://arxiv.org/abs/2106.03484). The codeb

<a href=[email protected]"> 9 Oct 26, 2022
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023
Code for "Finetuning Pretrained Transformers into Variational Autoencoders"

transformers-into-vaes Code for Finetuning Pretrained Transformers into Variational Autoencoders (our submission to NLP Insights Workshop 2021). Gathe

Seongmin Park 22 Nov 26, 2022
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

Facebook Research 605 Jan 02, 2023