Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

Overview

MediumVC

MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utterance i spoken by X). The Ŷi are considered as SSIF. To build SingleVC, we employ a novel data augment strategy: pitch-shifted and duration-remained(PSDR) to produce paired asymmetrical training data. Then, based on pre-trained SingleVC, MediumVC performs an asymmetrical reconstruction task(Ŷi → X̂i). Due to the asymmetrical reconstruction mode, MediumVC achieves more efficient feature decoupling and fusion. Experiments demonstrate MediumVC performs strong robustness for unseen speakers across multiple public datasets. Here is the official implementation of the paper, MediumVC.

The following are the overall model architecture.

Model architecture

For the audio samples, please refer to our demo page. The more converted speeches can be found in "Demo/ConvertedSpeeches/".

Envs

You can install the dependencies with

pip install -r requirements.txt

Speaker Encoder

Dvector is a robust speaker verification (SV) system pre-trained on VoxCeleb1 using GE2E loss, and it produces 256-dim speaker embedding. In our evaluation on multiple datasets(VCTK with 30000 pairs, Librispeech with 30000 pairs and VCC2020 with 10000 pairs), the equal error rates(EERs)and thresholds(THRs) are recorded in Table. Then Dvector with THRs is also employed to calculate SV accuracy(ACC) of pairs produced by MediumVC and other contrast methods for objective evaluation. The more details can access paper.

Dataset VCTK LibriSpeech VCC2020
EER(%)/THR 7.71/0.462 7.95/0.337 1.06/0.432

Vocoder

The HiFi-GAN vocoder is employed to convert log mel-spectrograms to waveforms. The model is trained on universal datasets with 13.93M parameters. Through our evaluation, it can synthesize 22.05 kHz high-fidelity speeches over 4.0 MOS, even in cross-language or noisy environments.

Infer

You can download the pretrained model, and then edit "Any2Any/infer/infer_config.yaml".Test Samples could be organized as "wav22050/$figure$/*.wav".

python Any2Any/infer/infer.py

Train from scratch

Preprocessing

The corpus should be organized as "VCTK22050/$figure$/*.wav", and then edit the config file "Any2Any/pre_feature/preprocess_config.yaml".The output "spk_emb_mel_label.pkl" will be used for training.

python Any2Any/pre_feature/figure_spkemb_mel.py

Training

Please edit the paths of pretrained hifi-model,wav2mel,dvector,SingleVC in config file "Any2Any/config.yaml" at first.

python Any2Any/solver.py
Owner
谷下雨
美中不足
谷下雨
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

Rishabh Bali 22 Aug 23, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"

PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention" to appear in ICCV 2021

Kamal Gupta 75 Dec 23, 2022
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: 百度网盘 提取码:zust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Alternatives to Deep Neural Networks for Function Approximations in Finance

Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit

15 Dec 17, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022