Sequence model architectures from scratch in PyTorch

Overview

Sequence Models

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The training loop implements the learner design pattern from fast.ai in pure PyTorch, with access to the loop provided through callbacks. Detailed logging and graphs are also provided with python logging and wandb. Additional implementations will be added.

Table of Contents

Setup

Using Miniconda/Anaconda:

  1. cd path_to_repo
  2. conda create --name --file requirements.txt
  3. conda activate

Usage

Global configuration for training/inference is found in src/config.py. To train a model customize the configuration by selecting everything from the model (For the list of available models see src/model_dispatcher.py) to learning rate and run:

python src/train.py

Training saves the model in runs/ along with the preprocessor/tokenizer and logs. For loss and metric visualizations enable wandb experiment tracking.

To interact with a model make sure the model was trained beforehand. By keeping the same configuration you can then run:

python src/interact.py

Implementations

RNN

Implementation of the vanilla Recurrent Neural Network is available in src/models/rnn.py. This is the most basic RNN which is defined with the RNN Cell pictured below ( Credit for the visualization belongs to deeplearning.ai). This cell is being applied to every timestep of a sequence, producing an output and a hidden state that gets fed back to it in the next timestep. These cells are often represented in a chain (unrolled representation), but one must remember that every link of that chain represents the same RNN Cell, in other words, the weights are the same. This forces the RNN cell to learn to be able to handle any timestep/position in a sequence. Some of the key points in which RNNs differ compared to FFNNs are:

  • Concept of time is resembled in the architecture
  • Inputs can be of arbitrary lengths
  • Network keeps memory of past samples/batches

For more details see my post on the RNN.

LSTM

Implementation of the Long-Short Term Memory is available in src/models/lstm.py. LSTM was designed to handle common problems of RNN's which included vanishing gradients and memory limitations. This was accomplished with an additional hidden state called the cell state (long term memory) and so-called gates which guard it and act as memory management. Gradient problem was mitigated with this because, as seen in the visualization below (Credit for the visualization belongs to deeplearning.ai), the cell state doesn't pass through any linear layers. Cell state is influenced only through addition or element-wise multiplication with the output of gates. Gates and their short roles:

  • Forget gate: what information to keep and what to forget in the long memory
  • Input gate: what information needs to be updated in the long memory
  • Cell gate: how the information will be updated in the long memory
  • Output gate: what part of the long memory is relevant for the short memory

For more details view my post on the LSTM.

Original Paper: Long Thort-Term Memory

GRU

Implementation of the Gated Recurrent Unit is available in src/models/gru.py. GRU loses the cell state compared to the LSTM and has a simpler structure. Below is the architecture of a GRU cell. For a more detailed comparison, one might take a look at Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. GRU cell architecture is presented below (Credit for the visualization belongs to deeplearning.ai).

Original Paper: Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

Sentiment Classifier

Implementation of a Sentiment Classifier is available in src/models/sentiment_clf.py. Dataset used for training is the IMDb dataset of positive and negative movie reviews available in data/imdb.csv.

Datapoint examples:

This movie is terrible but it has some good effects. , negative
...

Example config.py:

RUN_NAME='test'
BATCH_SIZE=128
WORKER_COUNT=4
EPOCHS=5
DATASET='imdb'
MODEL='rnnsentimentclf'
LOSS='BCEWithLogitsLoss'
LR=1e-3
OPTIMIZER='Adam'

A sentiment classifier is a model that takes as input a sentence and outputs its sentiment. There are many ways in which a sentiment classifier can be built. In this simple implementation, an embedding layer is used first as a learnable way to encode tokens into vectors. After that, an RNN (custom one is used but it can easily be swapped with the PyTorch one) is applied which produces output vectors across timesteps. Average pooling and max pooling is then applied to those vectors (shown to perform better than taking only the last output vector). Concatenated output from 2 pooling stages is fed through a linear layer and sigmoid to decide on the probability of positive sentiment.

Language Model

Implementation of a Language Model is available in src/models/language_model.py. Dataset used for training is the human numbers dataset introduced by fast.ai. It features a letter representation of the first 10,000 numbers written in English. It is a very simple benchmark for language models.

Datapoint examples:

one 
two 
three 
four 
five 
six 
seven 
...

Example config.py:

RUN_NAME='test'
BATCH_SIZE=128
WORKER_COUNT=4
EPOCHS=5
DATASET='human_numbers'
MODEL='rnnlanguagemodel'
LOSS='CrossEntropyLoss'
LR=1e-3
OPTIMIZER='Adam'

Language model's task is to predict the next word in a sequence. This simple implementation features an embedding layer followed by an RNN (custom one is used but it can easily be swapped with the PyTorch one). The output of the RNN goes through a linear layer which maps to a vector whose length is the same as the vocabulary size. The same vector then goes through softmax which normalizes the vector to resemble probabilities of each word in our vocabulary being the next word.

Citation

Please use this bibtex if you want to cite this repository:

@misc{Koch2021seqmodels,
  author = {Koch, Brando},
  title = {seq-models},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{}},
}

License

This repository is under an MIT License

License: MIT

Owner
Brando Koch
Machine Learning Engineer with experience in ML, DL , NLP & CV specializing in ConversationalAI & NLP.
Brando Koch
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023
Knowledge Oriented Programming Language

KoPL: 面向知识的推理问答编程语言 安装 | 快速开始 | 文档 KoPL全称 Knowledge oriented Programing Language, 是一个为复杂推理问答而设计的编程语言。我们可以将自然语言问题表示为由基本函数组合而成的KoPL程序,程序运行的结果就是问题的答案。目前,

THU-KEG 62 Dec 12, 2022
Basic yet complete Machine Learning pipeline for NLP tasks

Basic yet complete Machine Learning pipeline for NLP tasks This repository accompanies the article on building basic yet complete ML pipelines for sol

Ivan 20 Aug 22, 2022
Analyse japanese ebooks using MeCab to determine the difficulty level for japanese learners

japanese-ebook-analysis This aim of this project is to make analysing the contents of a japanese ebook easy and streamline the process for non-technic

Christoffer Aakre 14 Jul 23, 2022
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the

UVA Computer Vision 113 Dec 15, 2022
jiant is an NLP toolkit

jiant is an NLP toolkit The multitask and transfer learning toolkit for natural language processing research Why should I use jiant? jiant supports mu

ML² AT CILVR 1.5k Jan 04, 2023
Text vectorization tool to outperform TFIDF for classification tasks

WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth

186 Dec 29, 2022
BERT score for text generation

BERTScore Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). News: Features to appear in

Tianyi 1k Jan 08, 2023
RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2

RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi

Stefan Dumitrescu 9 Nov 07, 2022
结巴中文分词

jieba “结巴”中文分词:做最好的 Python 中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation

Sun Junyi 29.8k Jan 02, 2023
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022
Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Facebook Research 3.2k Jan 04, 2023
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

Riccardo Orlando 27 Nov 20, 2022
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

texttron 193 Jan 04, 2023
Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe NHV in the future.

Fast (GAN Based Neural) Vocoder Chinese README Todo Submit demo Support NHV Discription Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe include N

Zhengxi Liu (刘正曦) 134 Dec 16, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
[NeurIPS 2021] Code for Learning Signal-Agnostic Manifolds of Neural Fields

Learning Signal-Agnostic Manifolds of Neural Fields This is the uncleaned code for the paper Learning Signal-Agnostic Manifolds of Neural Fields. The

60 Dec 12, 2022