How to configure IOMMU device for nested Proxmox hypervisor (PVE) VM - PCIe Passthrough

Overview

Configuring PCIe Passthrough for Nested Virtualization on Proxmox

Summary:

If you are running bare-metal L0 (level 0) Proxmox (PVE) hypervisor with nested PVE hypervisor in L1 VM, and you wish to passthrough a PCIe device, physically attached to the bare-metal machine, to a VM inside the L1 VM (nested PVE), then this may be for you.

This was tested on a machine using Intel Xeon X5670, which has the required Virtualization Technology for Directed I/O (VT-d) support with Proxmox PVE v7.0-2.

Challenges:

I have a PCIe-to-SATA expansion card added to my computer and a SATA DVD drive was connected to it. Ultimately, I wanted the L2 VM to be able to fully control the drive.

Most PCIe passthrough guides found all over the Internet do not cover how one can set up passthrough for L2 VM residing in L1 nested hypervisor on top of L0 bare-metal hypervisor due to nested VM being two levels deep, which is needless for most people due to potential performance issues and no live migration support.

If you are like me, who prefers to experiment with passthrough on VMs directly on L1 PVEs due to clustering, then you have come to the right place.

Unfortunately, even Proxmox's PCIe passthrough guide doesn't cover nested virtualization. The minimal OS configuration needed for PCIe passthrough for supported Intel machine is updating the kernel command-line parameter, intel_iommu=on, which will be covered in later steps.

Requirements:

This guide assumes some familiarity with Proxmox (e.g. creating VMs).

There are two sets of requirements we need to fulfill as one is intended for nested virtualization and the other is for PCIe passthrough.

The below requirements are intended for the L1 PVE VM. Not the L2 VM guest.

Nested Virtualization:
  • CPU on bare-metal machine requires hardware-assisted virtualization extensions (e.g. Intel VT-x, AMD-V) which needs to be enabled in BIOS/UEFI.
  • Nested PVE (L1) using the same PVE version as the bare-metal PVE (L0)
  • Nested PVE VM needs to have CPU set to host type (ex. qm set --cpu host )
  • Nested PVE VM needs to use ovmf BIOS implementation (ex. qm set --bios ovmf )
  • Nested PVE VM requires q35 QEMU machine type (ex. qm set --machine q35 )

NOTE: It's extremely important to use q35 QEMU machine type and ovmf BIOS implementation together before booting up the machine. Otherwise, a kernel panic may occur, even at the bare-metal level and a hard reboot may be required to unseize the machine.

Nested virtualization may already be enabled for you if you are running the latest version of PVE. PVE 7.0 seems to have it enabled by default. To check, run cat /sys/module/kvm_intel/parameters/nested on L0 and you'd get either Y or N.

You can also configure the options through the web GUI instead of qm command. It's recommended to add only EFI disk on a storage location with no extra options but not required.

Screenshot of Create Virtual Machine - System option with OVMF BIOS and q35 machine selected

PCIe Passthrough:
  • Bare-metal requires CPU and motherboard with IOMMU (I/O Memory Management Unit) interrupt remapping support (e.g. Intel VT-d, AMD-Vi). Many modern CPUs and motherboards support this. This needs to be enabled in BIOS/UEFI settings.
  • For nested PVE, CPU also needs to be host type, ovmf BIOS implementation is required, and q35 QEMU machine type is necessary. This requirement is already outlined in the Nested Virtualization section.

Configuring Passthrough:

Enable IOMMU for L0:

Before we can proceed, we'd need to make sure the L0 hypervisor (bare-metal PVE) has IOMMU enabled, which can be done by tuning the kernel command-line parameter.

As mentioned in Proxmox documentation, you need to add intel_iommu=on in the bootloader configuration file depending on which one one you are using. Usually BIOS are found on legacy systems whereas UEFI are on modern systems. GRUB bootloader is typically for BIOS system, and EFI bootloader is for UEFI. Please see Proxmox documentation on editing the kernel command-line.

A reboot would be required after updating the kernel parameter in bootloader configuration file.

To verify, run dmesg | grep -e DMAR -e IOMMU -e AMD-Vi and if you see lines containing IOMMU, Directed I/O, or Interrupt Remapping being enabled, then you are set.

Enable IOMMU for L1 PVE:

This assumes L1 PVE has been created and you are ready to create a VM from L1 PVE virtual machine.

Before we can get to the next step, you also need to modify the kernel parameter for the L1 PVE the same way you did for L0 PVE in the previous section.

Create L2 VM:

You should already have the ability to add PCI device to the L1 VM through the Hardware settings.

At this point, you should be able to passthrough a PCIe device from L0 to L1 PVE. It would be listed in lspci -nnk output in L1 PVE's shell.

Proceed to create the L2 VM using any compatible Linux guest OS of your choice (Windows hasn't been tested) with the following virtual hardware requirements.

  • OVMF BIOS implementation must be used
  • q35 machine type is required

Go ahead attempt to add the passthrough PCI device as well.

What did you get? A warning like the one below?

No IOMMU detected error while adding PCI device to L2 VM

Despite updating the kernel parameter, you are faced with this error until you add a vIOMMU device to the L1 PVE, which was missing all along.

Where is the vIOMMU option?

You may wonder where you may have missed this option while creating the PVE. It turns out, it's not natively included with Proxmox tools at the time of this writing as VT-d emulation would need to be added in QEMU.

How VM is run on PVE is through the /usr/bin/qemu-system-x86_64 command. You would see that /usr/bin/kvm is a symbolic link to the previous command that powers the VMs on PVE.

Run the qm showcmd command for any configured VM of your choice, and you would see a very long kvm command. The long command derives from the configurations that you'd make to the VM.

To view the VM configuration via command, run qm config , which is human-readable as all options are in alphabetical order. Please see more information on qm command here.

According to the QEMU wiki article previously mentioned, the options needed to add the vIOMMU device to L1 PVE can theoretically be done through the qm set --args command.

qm set 100 --args '-device intel-iommu,intremap=on,caching-mode=on -machine accel=kvm,kernel-irqchip=split'

The above change would also reflect in the qm config and qm showcmd commands.

However... Because qm set --args would simply append the missing options to the end of the long kvm command, it would not work. The QEMU article said the intel-iommu device must be specificed before all other device parameters that you'd see in the kvm command.

You would have to shutdown the PVE, modifying the kvm command and add the missing options. The major drawback is that this change would have to be made each time you boot if you need IOMMU support for passthrough.

Adding vIOMMU to L1 PVE:

Fortunately, I've created a Python script to simplify the job. Hopefully, one day the Proxmox team can embed the vIOMMU option in a future release.

Just simply go to the L0 PVE's shell and run the commands below using the L1 PVE's VM ID. The script will not send a reboot signal and it'd passively wait for the VM to shutdown (not reboot as the script would be booting back up the VM).

wget https://raw.githubusercontent.com/bashtheshell/IOMMU-nested-pve/main/add_vIOMMU.py
python3 add_vIOMMU.py 
   

   

Please note that the above script may not be compatible with older version of PVE as this was tested on 7.0. At least Python 3.5 would be required.

Also, the script would have to be run at each boot when IOMMU is needed.

Re-attempt to add passthrough PCI device to L2 VM:

Previously, you may have received an error message on L2 VM that IOMMU isn't detected. Now that should no longer be the case.

Upon booting up the L2 VM, you should be able to see it in lspci -nnk output inside the guest OS. If yes, YOU ARE ALL SET!

If you are still facing challenges, then chances are you may be required to do further tweaking. Please review Proxmox's PCIe passthrough documentations.

Special Thanks:

Thanks to thenickdude for his contribution to my Reddit post, which steered me to the solution.

And of course, the Proxmox and QEMU/KVM teams for making all things possible for us homelabbers and tinkers.

Owner
Travis Johnson
Linux system administration enthusiast. Loves to tinker with programming and networking.
Travis Johnson
The goal of this project is for anyone with an old printer to be able to double-sided printing.

Welcome to PDF-double-side! Hi! I'm 15. I have a old printer so I can't print double-sided outs. The goal of this project is for anyone with an old pr

DejaVu 4 Dec 28, 2021
This Home Assistant custom component adding support for controlling Midea dehumidifiers on local network.

This custom component for Home Assistant adds support for Midea air conditioner and dehumidifier appliances via the local area network. homeassistant-

Nenad Bogojevic 92 Dec 31, 2022
Simple Weather Check base on Hefeng api, Work on raspberry Pi

Simple Weather Check base on Hefeng api, Work on raspberry Pi

Retr0mous 28 Sep 17, 2022
Jarvis: a personal assistant which can help you to manage your system

Jarvis Jarvis is personal AI based assistant which can help you to manage stuff in your computer. This is demo but I decided to make it more better so

2 Jun 02, 2022
PyTorch implementation of paper "MT-ORL: Multi-Task Occlusion Relationship Learning" (ICCV 2021)

MT-ORL: Multi-Task Occlusion Relationship Learning Official implementation of paper "MT-ORL: Multi-Task Occlusion Relationship Learning" (ICCV 2021) P

Panhe Feng 12 Oct 11, 2022
Yet another automation project because a smart light is more than just on or off.

Automate home Yet another home automation project because a smart light is more than just on or off. Overview When talking about home automation there

Maja Massarini 62 Oct 10, 2022
LED effects plugin for klipper

This plugin allows Klipper to run effects and animations on addressable LEDs, such as Neopixels, WS2812 or SK6812.

Julian Schill 238 Jan 04, 2023
Lenovo Legion 5 Pro 2021 Linux RGB Keyboard Light Controller

Lenovo Legion 5 Pro 2021 Linux RGB Keyboard Light Controller This util allows to drive RGB keyboard light on Lenovo Legion 5 Pro 2021 Laptop Requireme

36 Dec 16, 2022
Implemented robot inverse kinematics.

robot_inverse_kinematics Project setup # put the package in the workspace $ cd ~/catkin_ws/ $ catkin_make $ source devel/setup.bash Description In thi

Jianming Han 2 Dec 08, 2022
Home Assistant custom component to help ev-chargers stay below peak hourly energy levels.

Peaqev ev-charging Peaqev ev-charging is an attempt of charging an ev without breaching a preset monthly max-peak energy level. In order for this inte

Magnus Eldén 35 Dec 24, 2022
Various programs in Atari BASIC for #FujiNet for Atari 8-bit

FujiNet Various programs in Atari BASIC for #FujiNet for Atari 8-bit FujiNet-3D Tic Tac Toe In 1978, Scott Adams wrote a 3-D Tic Tac Toe game, for pla

Kay Savetz 2 Jan 01, 2022
A Home Assistant integration for Solaredge inverters

A Home Assistant integration for Solaredge inverters. Supports multiple inverters chained through RS485.

Seth 50 Dec 23, 2022
🏡 My Home Assistant Configs. Be sure to 🌟 my repo to follow the updates!

Home Assistant Configuration Here's my Home Assistant configuration. I have installed HA on a Lenovo ThinkCentre M93P Tiny with an Intel Dual-Core i5-

iLyas Bakouch 25 Dec 30, 2022
Home Assistant custom components MPK-Lodz

MPK Łódź sensor This sensor uses unofficial API provided by MPK Łódź. Configuration options Key Type Required Default Description name string False MP

Piotr Machowski 3 Nov 01, 2022
Example code and projects for FeatherS2 and FeatherS2 Neo

FeatherS2 & FeatherS2 Neo This repo is a collection of code, firmware, and files

Unexpected Maker 5 Jan 01, 2023
A refreshed Python toolbox for building complex digital hardware

A refreshed Python toolbox for building complex digital hardware

nMigen 1k Jan 05, 2023
Designed and coded a password manager in Python with Arduino integration

Designed and coded a password manager in Python with Arduino integration. The Program uses a master user to login, and stores account data such as usernames and passwords to the master user. While lo

Noah Colbourne 1 Jan 16, 2022
Switch predictor for Home Assistant with AppDeamon

Home Assistant AppDeamon - Event predictor WORK IN PROGRESS - CURRENTLY NOT COMPLETE AND NOT WORK This is an idea under development (when I have free

37 Dec 17, 2022
An embedded application for toy-car controlling based on Raspberry Pi 3 Model B and AlphaBot2-Pi.

An embedded application for toy-car controlling based on Raspberry Pi 3 Model B and AlphaBot2-Pi. This is the source codes of my programming assignmen

StardustDL 4 Oct 19, 2022
Home Assistant custom integration to fetch data from Powerpal

Powerpal custom component for Home Assistant Component to integrate with powerpal. This repository and integration is not affiliated with Powerpal. Th

Lawrence 32 Jan 07, 2023