How to configure IOMMU device for nested Proxmox hypervisor (PVE) VM - PCIe Passthrough

Overview

Configuring PCIe Passthrough for Nested Virtualization on Proxmox

Summary:

If you are running bare-metal L0 (level 0) Proxmox (PVE) hypervisor with nested PVE hypervisor in L1 VM, and you wish to passthrough a PCIe device, physically attached to the bare-metal machine, to a VM inside the L1 VM (nested PVE), then this may be for you.

This was tested on a machine using Intel Xeon X5670, which has the required Virtualization Technology for Directed I/O (VT-d) support with Proxmox PVE v7.0-2.

Challenges:

I have a PCIe-to-SATA expansion card added to my computer and a SATA DVD drive was connected to it. Ultimately, I wanted the L2 VM to be able to fully control the drive.

Most PCIe passthrough guides found all over the Internet do not cover how one can set up passthrough for L2 VM residing in L1 nested hypervisor on top of L0 bare-metal hypervisor due to nested VM being two levels deep, which is needless for most people due to potential performance issues and no live migration support.

If you are like me, who prefers to experiment with passthrough on VMs directly on L1 PVEs due to clustering, then you have come to the right place.

Unfortunately, even Proxmox's PCIe passthrough guide doesn't cover nested virtualization. The minimal OS configuration needed for PCIe passthrough for supported Intel machine is updating the kernel command-line parameter, intel_iommu=on, which will be covered in later steps.

Requirements:

This guide assumes some familiarity with Proxmox (e.g. creating VMs).

There are two sets of requirements we need to fulfill as one is intended for nested virtualization and the other is for PCIe passthrough.

The below requirements are intended for the L1 PVE VM. Not the L2 VM guest.

Nested Virtualization:
  • CPU on bare-metal machine requires hardware-assisted virtualization extensions (e.g. Intel VT-x, AMD-V) which needs to be enabled in BIOS/UEFI.
  • Nested PVE (L1) using the same PVE version as the bare-metal PVE (L0)
  • Nested PVE VM needs to have CPU set to host type (ex. qm set --cpu host )
  • Nested PVE VM needs to use ovmf BIOS implementation (ex. qm set --bios ovmf )
  • Nested PVE VM requires q35 QEMU machine type (ex. qm set --machine q35 )

NOTE: It's extremely important to use q35 QEMU machine type and ovmf BIOS implementation together before booting up the machine. Otherwise, a kernel panic may occur, even at the bare-metal level and a hard reboot may be required to unseize the machine.

Nested virtualization may already be enabled for you if you are running the latest version of PVE. PVE 7.0 seems to have it enabled by default. To check, run cat /sys/module/kvm_intel/parameters/nested on L0 and you'd get either Y or N.

You can also configure the options through the web GUI instead of qm command. It's recommended to add only EFI disk on a storage location with no extra options but not required.

Screenshot of Create Virtual Machine - System option with OVMF BIOS and q35 machine selected

PCIe Passthrough:
  • Bare-metal requires CPU and motherboard with IOMMU (I/O Memory Management Unit) interrupt remapping support (e.g. Intel VT-d, AMD-Vi). Many modern CPUs and motherboards support this. This needs to be enabled in BIOS/UEFI settings.
  • For nested PVE, CPU also needs to be host type, ovmf BIOS implementation is required, and q35 QEMU machine type is necessary. This requirement is already outlined in the Nested Virtualization section.

Configuring Passthrough:

Enable IOMMU for L0:

Before we can proceed, we'd need to make sure the L0 hypervisor (bare-metal PVE) has IOMMU enabled, which can be done by tuning the kernel command-line parameter.

As mentioned in Proxmox documentation, you need to add intel_iommu=on in the bootloader configuration file depending on which one one you are using. Usually BIOS are found on legacy systems whereas UEFI are on modern systems. GRUB bootloader is typically for BIOS system, and EFI bootloader is for UEFI. Please see Proxmox documentation on editing the kernel command-line.

A reboot would be required after updating the kernel parameter in bootloader configuration file.

To verify, run dmesg | grep -e DMAR -e IOMMU -e AMD-Vi and if you see lines containing IOMMU, Directed I/O, or Interrupt Remapping being enabled, then you are set.

Enable IOMMU for L1 PVE:

This assumes L1 PVE has been created and you are ready to create a VM from L1 PVE virtual machine.

Before we can get to the next step, you also need to modify the kernel parameter for the L1 PVE the same way you did for L0 PVE in the previous section.

Create L2 VM:

You should already have the ability to add PCI device to the L1 VM through the Hardware settings.

At this point, you should be able to passthrough a PCIe device from L0 to L1 PVE. It would be listed in lspci -nnk output in L1 PVE's shell.

Proceed to create the L2 VM using any compatible Linux guest OS of your choice (Windows hasn't been tested) with the following virtual hardware requirements.

  • OVMF BIOS implementation must be used
  • q35 machine type is required

Go ahead attempt to add the passthrough PCI device as well.

What did you get? A warning like the one below?

No IOMMU detected error while adding PCI device to L2 VM

Despite updating the kernel parameter, you are faced with this error until you add a vIOMMU device to the L1 PVE, which was missing all along.

Where is the vIOMMU option?

You may wonder where you may have missed this option while creating the PVE. It turns out, it's not natively included with Proxmox tools at the time of this writing as VT-d emulation would need to be added in QEMU.

How VM is run on PVE is through the /usr/bin/qemu-system-x86_64 command. You would see that /usr/bin/kvm is a symbolic link to the previous command that powers the VMs on PVE.

Run the qm showcmd command for any configured VM of your choice, and you would see a very long kvm command. The long command derives from the configurations that you'd make to the VM.

To view the VM configuration via command, run qm config , which is human-readable as all options are in alphabetical order. Please see more information on qm command here.

According to the QEMU wiki article previously mentioned, the options needed to add the vIOMMU device to L1 PVE can theoretically be done through the qm set --args command.

qm set 100 --args '-device intel-iommu,intremap=on,caching-mode=on -machine accel=kvm,kernel-irqchip=split'

The above change would also reflect in the qm config and qm showcmd commands.

However... Because qm set --args would simply append the missing options to the end of the long kvm command, it would not work. The QEMU article said the intel-iommu device must be specificed before all other device parameters that you'd see in the kvm command.

You would have to shutdown the PVE, modifying the kvm command and add the missing options. The major drawback is that this change would have to be made each time you boot if you need IOMMU support for passthrough.

Adding vIOMMU to L1 PVE:

Fortunately, I've created a Python script to simplify the job. Hopefully, one day the Proxmox team can embed the vIOMMU option in a future release.

Just simply go to the L0 PVE's shell and run the commands below using the L1 PVE's VM ID. The script will not send a reboot signal and it'd passively wait for the VM to shutdown (not reboot as the script would be booting back up the VM).

wget https://raw.githubusercontent.com/bashtheshell/IOMMU-nested-pve/main/add_vIOMMU.py
python3 add_vIOMMU.py 
   

   

Please note that the above script may not be compatible with older version of PVE as this was tested on 7.0. At least Python 3.5 would be required.

Also, the script would have to be run at each boot when IOMMU is needed.

Re-attempt to add passthrough PCI device to L2 VM:

Previously, you may have received an error message on L2 VM that IOMMU isn't detected. Now that should no longer be the case.

Upon booting up the L2 VM, you should be able to see it in lspci -nnk output inside the guest OS. If yes, YOU ARE ALL SET!

If you are still facing challenges, then chances are you may be required to do further tweaking. Please review Proxmox's PCIe passthrough documentations.

Special Thanks:

Thanks to thenickdude for his contribution to my Reddit post, which steered me to the solution.

And of course, the Proxmox and QEMU/KVM teams for making all things possible for us homelabbers and tinkers.

Owner
Travis Johnson
Linux system administration enthusiast. Loves to tinker with programming and networking.
Travis Johnson
Designed and coded a password manager in Python with Arduino integration

Designed and coded a password manager in Python with Arduino integration. The Program uses a master user to login, and stores account data such as usernames and passwords to the master user. While lo

Noah Colbourne 1 Jan 16, 2022
Custom component for Home Assistant that integrates Candy/Haier Wi-Fi washing machines (also known as Simply-Fi).

Candy Home Assistant component Custom component for Home Assistant that integrates Candy/Haier Wi-Fi washing machines (also known as Simply-Fi). This

Olivér Falvai 61 Dec 29, 2022
DOS-like OS for RP2040 basic microcontroller boards

Micropython DOS-like OS for RP2040 microcontroller boards. Check out the demo video at https://www.youtube.com/watch?v=Az_oiq8GE4Y To start the OS typ

RetiredWizard 58 Dec 27, 2022
Raspberry Pi & Accelerometer with Losant's EEA

Raspberry Pi & Accelerometer with Losant's EEA This is a repository that contains companion code to this EEA How To guide. Each folder is named accord

Losant 1 Oct 29, 2021
Example Python code for building RPi-controlled robotic systems

RPi Example Code Example Python code for building RPi-controlled robotic systems These python files have been compiled / developed by the Neurobionics

Elliott Rouse 2 Feb 04, 2022
The PicoEMP is a low-cost Electromagnetic Fault Injection (EMFI) tool,

ChipSHOUTER-PicoEMP The PicoEMP is a low-cost Electromagnetic Fault Injection (EMFI) tool, designed specifically for self-study and hobbiest research.

NewAE Technology Inc. 312 Jan 07, 2023
Controlling fireworks with micropython

Controlling-fireworks-with-micropython How the code works line 1-4 from machine

Montso Mokake 1 Jan 08, 2022
Python Wrapper for Homeassistant's REST API

HomeassistantAPI Python Wrapper for Homeassistant's REST API Please ⭐️ the repo if you find this project useful or cool! Here is a quick example. from

Nate 29 Dec 31, 2022
Isaac Gym Environments for Legged Robots

Isaac Gym Environments for Legged Robots This repository provides the environment used to train ANYmal (and other robots) to walk on rough terrain usi

Robotic Systems Lab - Legged Robotics at ETH Zürich 372 Jan 08, 2023
Home Assistant custom integration for e-distribución

e-Distribución is an energy distribution company that covers most of South Spain area. If you live in this area, you probably are able to register into their website to get some information about you

VMG 17 Sep 07, 2022
A simple portable USB MIDI controller based on Raspberry-PI Pico and a 16-button keypad, written in Circuit Python

RPI-Pico-16-BTn-MIDI-Controller-using-CircuitPython A simple portable USB MIDI controller based on Raspberry-PI Pico, written in Circuit Python. Link

Rounak Dutta 3 Dec 04, 2022
DNP3 Stalker is a project to analyze and interact with DNP3 devices

DNP3 Stalker Purpose DNP3 Stalker is a project to analyze and interact with DNP3

Cutaway Security, LLC. 2 Feb 10, 2022
Ha-rpi gpio - Home Assistant Raspberry Pi GPIO Integration

Home Assistant Raspberry Pi GPIO custom integration This is a spin-off from the

Shay Levy 98 Dec 24, 2022
Create a low powered, renewable generation forecast display with a Raspberry Pi Zero & Inky wHAT.

GB Renewable Forecast Display This Raspberry Pi powered eInk display aims to give you a quick way to time your home energy usage to help balance the g

Andy Brace 32 Jul 02, 2022
Pure micropython ESP32 SPI driver for sdcard and screen at the same SPI bus

micropython-esp32-spi-sdcard-and-screen-driver Proof of concept of Pure micropython espidf SPI driver for sdcard with screen at the same SPI bus (exam

Thomas Favennec 7 Mar 14, 2022
A DiY holiday project to demonstrate how you can send data from adafruitIO cloud to a balena edge device

holiday-star balena ❤️ adafruitIO Introduction A DiY holiday project to demonstrate how you can send data from adafruitIO cloud to a balena edge devic

Ayan Pahwa 3 Dec 20, 2021
A python module for interacting with rolimon's, a roblox value site.

rpi - rolimon's python interaction rpi is an open source python-based rolimon's api wrapper. It provides an end-to-end pipeline in which each componen

Acier 11 Nov 08, 2022
Intel Realsense t265 into Unreal Engine

t265_UE Intel Realsense t265 into Unreal Engine. Windows only, and Livelink plugin is 4.26.2 only at the moment. Might recompile it for different vers

Bjarke Aagaard 30 Jan 02, 2023
This Home Assistant custom component adding support for controlling Midea dehumidifiers on local network.

This custom component for Home assistant adds support for Midea dehumidifier appliances via the local area network. homeassistant-midea-dehumidifier-l

Nenad Bogojevic 91 Dec 28, 2022
It is a serial communicator(controller, receiver...), communicate with sensor LP20 which is a laser ranger.

Intro It is a serial communicator(controller, receiver...), communicate with sensor LP20 which is a laser ranger. Its datasheet is contained in this r

3 Sep 19, 2022